Background We investigated prognostic models based on clinical, radiologic, and radiomic feature to preoperatively identify meningiomas at risk for poor outcomes. Methods Retrospective review was performed for 303 patients who underwent resection of 314 meningiomas (57% World Health Organization grade I, 35% grade II, and 8% grade III) at two independent institutions, which comprised primary and external datasets. For each patient in the primary dataset, 16 radiologic and 172 radiomic features were extracted from preoperative magnetic resonance images, and prognostic features for grade, local failure (LF) or overall survival (OS) were identified using the Kaplan–Meier method, log-rank tests and recursive partitioning analysis. Regressions and random forests were used to generate and test prognostic models, which were validated using the external dataset. Results Multivariate analysis revealed that apparent diffusion coefficient hypointensity (HR 5.56, 95% CI 2.01–16.7, P = .002) was associated with high grade meningioma, and low sphericity was associated both with increased LF (HR 2.0, 95% CI 1.1–3.5, P = .02) and worse OS (HR 2.94, 95% CI 1.47–5.56, P = .002). Both radiologic and radiomic predictors of adverse meningioma outcomes were significantly associated with molecular markers of aggressive meningioma biology, such as somatic mutation burden, DNA methylation status, and FOXM1 expression. Integrated prognostic models combining clinical, radiologic, and radiomic features demonstrated improved accuracy for meningioma grade, LF, and OS (area under the curve 0.78, 0.75, and 0.78, respectively) compared to models based on clinical features alone. Conclusions Preoperative radiologic and radiomic features such as apparent diffusion coefficient and sphericity can predict tumor grade, LF, and OS in patients with meningioma.
Deep learning algorithms have recently been developed that utilize patient anatomy and raw imaging information to predict radiation dose, as a means to increase treatment planning efficiency and improve radiotherapy plan quality. Current state-of-the-art techniques rely on convolutional neural networks (CNNs) that use pixel-to-pixel loss to update network parameters. However, stereotactic body radiotherapy (SBRT) dose is often heterogeneous, making it difficult to model using pixel-level loss. Generative adversarial networks (GANs) utilize adversarial learning that incorporates image-level loss and is better suited to learn from heterogeneous labels. However, GANs are difficult to train and rely on compromised architectures to facilitate convergence. This study suggests an attention-gated generative adversarial network (DoseGAN) to improve learning, increase model complexity, and reduce network redundancy by focusing on relevant anatomy. DoseGAN was compared to alternative state-of-the-art dose prediction algorithms using heterogeneity index, conformity index, and various dosimetric parameters. All algorithms were trained, validated, and tested using 141 prostate SBRT patients. DoseGAN was able to predict more realistic volumetric dosimetry compared to all other algorithms and achieved statistically significant improvement compared to all alternative algorithms for the V 100 and V 120 of the PTV, V 60 of the rectum, and heterogeneity index. Advanced treatment techniques such as intensity modulated radiation therapy (IMRT) and volumetrically modulated arc therapy (VMAT) have become standard of care for many treatment sites 1,2. Creating clinically acceptable treatment plans using these advanced techniques requires extensive domain expertise and is exceedingly time consuming 3,4. To reduce the burden on clinical resources, the development of automated treatment planning technologies has accelerated in recent years 5-10. Historically, automated treatment planning technologies relied on selecting handcrafted features, such as spatial relationships between planning volumes, overlapping volume histograms, planning volume shapes, planning volume and field intersections, field shapes, planning volume depths , and distance-to-target histograms (DTH) 11-14. These techniques rely on machine learning algorithms such as gradient boosting, random forests, and support vector machines to find strong correlations between groups of weakly correlated predictive features 6,15-17. Such techniques achieve good performance on inherently structured data, but tend to struggle if the problem does not easily reduce to a structured format. Because of this, deep learning approaches have emerged that predict dose using fully connected layers 18. However, fully connected layers tend to not generalize well on highly dimensional data. Convolutional neural networks (CNNs) have emerged to solve many image processing tasks 4,6,19-23. Recently, encoder-decoder CNNs have been used to predict radiation dose from arbitrary patient anatomy. These method...
To suggest an attention-aware, cycle-consistent generative adversarial network (A-CycleGAN) enhanced with variational autoencoding (VAE) as a superior alternative to current state-of-the-art MR-to-CT image translation methods.Materials and Methods: An attention-gating mechanism is incorporated into a discriminator network to encourage a more parsimonious use of network parameters, whereas VAE enhancement enables deeper discrimination architectures without inhibiting model convergence. Findings from 60 patients with head, neck, and brain cancer were used to train and validate A-CycleGAN, and findings from 30 patients were used for the holdout test set and were used to report final evaluation metric results using mean absolute error (MAE) and peak signal-to-noise ratio (PSNR).Results: A-CycleGAN achieved superior results compared with U-Net, a generative adversarial network (GAN), and a cycle-consistent GAN. The A-CycleGAN averages, 95% confidence intervals (CIs), and Wilcoxon signed-rank two-sided test statistics are shown for
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.