Increasing antibiotic resistance makes the identification of new antibacterial principles an urgent task. The thioredoxin system including thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH plays critical roles in cellular DNA synthesis and defense against oxidative stress. Notably, TrxR is very different in structure and mechanism in mammals and bacteria. Ebselen [2-phenyl-1,2 benzisoselenazol-3(2H)-one], a well-known antioxidant and a substrate for mammalian TrxR and Trx, is rapidly bacteriocidal for methicillin-resistant Staphylococcus aureus by an unknown mechanism. We have discovered that ebselen is a competitive inhibitor of Escherichia coli TrxR with a Ki of 0.52 ± 0.13 μM, through reaction with the active site dithiol of the enzyme. Bacteria lacking glutathione (GSH) and glutaredoxin, in which TrxR and Trx are essential for DNA synthesis, were particularly sensitive to ebselen. In growth-inhibited E. coli strains, Trx1 and Trx2 were oxidized, demonstrating that electron transfer via thioredoxin was blocked. Ebselen and its sulfur analog ebsulfur were bactericidal for GSH-negative pathogens. Ebsulfur inhibited a clinically isolated Helicobacter pylori strain with a minimum inhibitory concentration value as low as 0.39 μg/ml. These results demonstrate that bacterial Trx and TrxR are viable antibacterial drug targets using benzisoselenazol and benzisothiazol derivates.
SUMMARY
Energetic nutrients are oxidized to sustain high intra-cellular NADPH/NADP+ ratios. NADPH-dependent reduction of thioredoxin-1 (Trx1) disulfide and glutathione disulfide by thioredoxin reductase-1 (TrxR1) and glutathione reductase (Gsr), respectively, fuels antioxidant systems and deoxyribonucleotide synthesis. Mouse livers lacking both TrxR1 and Gsr sustain these essential activities using an NADPH-independent methionine-consuming pathway; however, it remains unclear how this reducing power is distributed. Here, we show that liver-specific co-disruption of the genes encoding Trx1, TrxR1, and Gsr (triple-null) causes dramatic hepatocyte hyperproliferation. Thus, even in the absence of Trx1, methionine-fueled glutathione production supports hepatocyte S phase deoxyribonucleotide production. Also, Trx1 in the absence of TrxR1 provides a survival advantage to cells under hyperglycemic stress, suggesting that glutathione, likely via glutaredoxins, can reduce Trx1 disulfide in vivo. In triple-null livers like in many cancers, deoxyribonucleotide synthesis places a critical yet relatively low-volume demand on these reductase systems, thereby favoring high hepatocyte turnover over sustained hepatocyte integrity.
Auranofin is an FDA-approved gold-containing compound used for the treatment of rheumatoid arthritis. Recent reports of antimicrobial activity against protozoa and bacteria indicate that auranofin targets the reductive enzyme thioredoxin reductase (TrxR). We evaluated auranofin as well as five auranofin analogs containing N-heterocyclic carbenes (instead of the triethylphosphane present in auranofin) and five gold-carbene controls for their ability to inhibit or kill Helicobacter pylori in vitro Auranofin completely inhibited bacterial growth at 1.2 μM. Purified H. pylori TrxR was inhibited by auranofin in a cell-free assay (IC50 ∼88 nM). The most active gold(I)-N-heterocyclic carbene compounds exhibited MICs comparable to auranofin against H. pylori (2 μM), while also exhibiting lower toxicities for human embryonic kidney cells (HEK-293T cells). Median toxic concentrations (TC50) were 13-20-fold higher compared to auranofin indicating that they were less cytotoxic. The N-heterocyclic carbene analogs maybe well tolerated, but further evaluation is needed in vivo Finally, auranofin was synergistic with the antibiotic amoxicillin, suggesting that targeting both the reductive enzyme TrxR and cell wall synthesis may be effective against H. pylori infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.