The National Beef Quality Audit-2000 was conducted to assess the current status ofthe quality and consistency of U.S. fed steers and heifers. Between May and November 2000, survey teams assessed hide condition (n = 43,415 cattle for color, brands, mud/manure), bruises (n = 43,595 carcasses), offal and carcass condemnation (n = 8,588 cattle), and carcass quality and yield information (n = 9,396 carcasses) in 30 U.S. beef packing plants. Hide colors were black (45.1%), red (31.0%), yellow (8.0%), Holstein (5.7%), gray (4.0%), white (3.2%), brown (1.7%), and brindle (1.3%). Brand frequencies were no (49.3%), one (46.2%), and two or more (4.4%), and brands were located on the butt (36.3%), side (13.7%), and shoulder (3.6%). Most cattle had no (18.0%) or a small amount (55.8%) of mud/manure on their hides, and they had no (77.3%) horns. Most carcasses (53.3%) were not bruised, 30.9% had one bruise, and 15.8% had multiple bruises. Bruise location and incidence were round (14.9%), loin (25.9%), rib (19.4%), chuck (28.2%), and brisket, flank, and plate (11.6%). Condemnation item and incidence were liver (30.3%), lungs (13.8%), tripe (11.6%), heads (6.2%), tongues (7.0%), and carcasses (0.1%). Carcass evaluation revealed these traits and frequencies: steer (67.9%), heifer (31.8%), and bullock (0.3%) sex-classes; dark-cutters (2.3%); A (96.6%), B (2.5%), and C or older (0.9%) overall maturities; and native (90.1%), dairy-type (6.9%), and Bos indicus (3.0%) breed-types. Mean USDA yield grade traits were USDA yield grade (3.0), carcass weight (356.9 kg), adjusted fat thickness (1.2 cm), longissimus muscle area (84.5 cm2), and kidney, pelvic, and heart fat (2.4%). USDA yield grades were Yield Grade 1 (12.2%), Yield Grade 2 (37.4%), Yield Grade 3 (38.6%), Yield Grade 4 (10.4%), and Yield Grade 5 (1.3%). Mean USDA quality grade traits were USDA quality grade (Select85), marbling score (Small23), overall maturity (A66), lean maturity (A65), and skeletal maturity (A67). Marbling score distribution was Slightly Abundant or higher (2.3%), Moderate (4.8%), Modest (13.1%), Small (33.3%), Slight (43.3%), and Traces (3.4%). USDA quality grades were Prime (2.0%), Choice (49.1%), Select (42.3%), Standard (5.6%), and Commercial, Utility, Cutter, and Canner (0.9%). This information will help the beef industry measure progress compared to the past two surveys and will provide a benchmark for future educational and research activities.
Experiments were conducted at 3 US locations (CA, ID, and TX) to determine the effects of dietary zilpaterol hydrochloride (Zilmax, Intervet Inc., Millsboro, DE) and duration of zilpaterol feeding on performance and carcass merit of finishing steers and heifers. At each site, 160 steers and 160 heifers were stratified within sex by initial BW (study d -1) and assigned randomly within BW strata to 1 of 4 treatments in a randomized complete block design (4 blocks/treatment for each sex). The 4 treatments were arranged in a 2 (no zilpaterol vs. zilpaterol) x 2 (20 or 40 d duration of zilpaterol feeding) factorial arrangement of treatments. When included in the diet, zilpaterol was supplemented at 8.3 mg/kg of DM. Each pen consisted of 10 animals. Each animal was individually weighed unshrunk on d 1, 21 or 41, and 66 of the experiment. Following d 66, cattle were slaughtered and carcass data collected. Feeding zilpaterol increased (P<0.01) final BW of steers and heifers by 11.6 and 6.7 kg, respectively. In addition, feeding zilpaterol hydrochloride increased (P
Four trials, each with a randomized complete block design, were conducted with 8,647 beef steers (initial BW = 346 +/- 29.6 kg) in 3 different locations in the United States to evaluate the effects of zilpaterol hydrochloride (ZH) on performance and carcass characteristics of feedlot cattle. Treatments consisted of feeding ZH (8.33 mg/kg of dietary DM) for 0, 20, 30, or 40 d, at the end of the feeding period, followed by a 3-d withdrawal period before slaughter. Cattle were weighed on d 0 and 50 before slaughter (in 3 of the 4 studies), and on the day of slaughter. Data from the 4 trials were pooled for statistical analyses. No differences (P > or = 0.78) were detected among treatments for ADG and G:F from the start of the study until the final 50 d on feed. Final BW was greater for the average of the 3 ZH-treated groups (P < 0.01) than for the 0-d group. Average daily gain was greater for ZH-treated vs. control cattle during the final 50 d on feed (P < 0.01) and for the entire feeding period (P < 0.01). No differences in DMI were noted for any periods of the experiment (P > or = 0.42) for ZH-treated cattle vs. controls. No differences were noted for DMI among the ZH-treated groups for the final 50 d on feed (P = 0.81) or for the overall feeding period (P = 0.31). Feeding ZH for any length of time increased G:F (P < 0.01) for the final 50 d and overall compared with 0-d cattle. In addition, a linear increase with more days of ZH feeding was observed for G:F during the period that ZH was fed (P = 0.01), as well as for the overall feeding period (P = 0.01). The ZH-treated cattle had heavier HCW (P < 0.01), greater dressing percent (P < 0.01), reduced marbling scores (P < 0.01), less 12th-rib fat (P < 0.01), larger LM area (P < 0.01), less KPH (P = 0.01), and a lower USDA yield grade (P < 0.01) than the 0-d cattle, regardless of the duration of ZH feeding. Dressing percent increased linearly (P < 0.01) with increased duration of ZH feeding, whereas 12th-rib fat (P = 0.07), marbling scores (P < 0.01), and USDA calculated yield grade (P = 0.01) decreased linearly with increased duration of ZH feeding. Feeding ZH increased ADG and G:F and decreased overall carcass fatness. In addition, effects of ZH on measures of carcass fatness were enhanced by feeding the product for a greater length of time.
Decreasing dietary N inputs into beef cattle feeding operations could potentially decrease environmental concerns relating to air and water quality. Previous studies with sheep suggest that oscillating dietary CP concentrations may improve N use efficiency and thereby decrease dietary N requirements. Therefore, two studies were conducted to determine the effects of oscillating dietary CP concentrations on performance, acid-base balance, and manure characteristics of steers fed high-concentrate diets. Steers were fed to a constant backfat thickness in both studies. In the first trial, 92 steers (mean BW = 408 +/- 2.8 kg; four pens/treatment) were fed the following diets: 1) constant 12% CP, 2) constant 14% CP, and 3) 10 and 14% CP oscillated at 2-d intervals. Steer performance and carcass characteristics were measured. In the second trial, 27 steers were individually fed the same three experimental dietary regimens (nine steers/treatment). Animal performance, arterial acid-base balance, plasma metabolites, and fecal characteristics were measured. In both trials, steers fed the 14% CP diet tended (P < 0.10) to have greater ADG and gain:feed than steers fed the 12% CP diet. Steers fed the oscillating CP regimen had intermediate performance. In Trial 1, steers fed the 14% CP diet tended (P = 0.09) to have smaller longissimus area and higher quality grades than steers fed the oscillating CP regimen. Protein retentions (g/d) calculated from NRC (2000) equations were greater (P = 0.04) for steers fed the 14% CP diet than steers fed the 12% CP diet. Steers fed the oscillating CP regimen tended (P = 0.08) to have greater calculated protein retention (g/d) than steers fed the 12% CP diet. Steers fed the 14% CP diet had greater (P < 0.05) calculated urinary N excretion than steers fed the 12% CP or oscillating CP regimens. Venous plasma concentrations of urea N were greater (P < 0.001) in steers fed the 14% CP diet than in steers fed the 12% CP diet; steers fed the oscillating CP regimen were intermediate but fluctuated over days. Based on arterial blood gas concentrations, acid-base balance was not significantly affected by dietary CP regimen. Results of these trials suggest that the CP requirement of steers in these studies was greater than 12% of the diet DM, and/or that the degradable CP requirement was greater than 6.3% of diet DM. However, the effects of oscillating dietary CP were minimal.
Ruminally protected choline (RPC) was evaluated in two experiments. In Exp. 1, beef steers (n = 160; average initial BW = 350.9 kg) were fed a 90% concentrate diet with either 0, .25, .5, or 1.0% RPC (DM basis) for 112 to 140 d. Feeding .25% RPC increased ADG 11.6% compared with 0% RPC, but responses diminished with increasing RPC level (cubic response, P < .10). Daily DMI was not affected by RPC level, but feed:gain was improved 6.8% with .25% RPC compared with 0% RPC, and responses diminished with increasing RPC level (cubic response, P < .10). Carcass yield grade increased linearly (P < .10) as RPC level increased, but marbling score was lower for all three RPC-containing diets than for the 0% RPC diet (quadratic response, P < .05). In Exp. 2, 20 Suffolk lambs (initial BW = 29.8 kg) were fed an 80% concentrate diet for 56 d with the same RPC levels as in Exp. 1. Serum triglycerides (TG) and cholesterol (CLSTRL) were measured in weekly blood samples, and intensive blood samples were collected on d 28 and 56 to evaluate serum insulin (INS), GH, and NEFA. For the 56-d feeding period, ADG responded quadratically (P < .10) to RPC level, but DMI and feed:gain were not affected. Serum INS and NEFA concentrations increased linearly (P < .05) and serum GH responded cubically (P < .05) to RPC level on d 28, but no differences were noted on d 56. Serum TG concentrations in weekly samples increased linearly (P < .10) with RPC level, but, averaged over all weeks, serum CLSTRL concentrations did not differ (P > .10) among treatments. Quantities of carcass mesenteric (P < .05) and kidney fat (P < .10) increased linearly, but longissimus muscle and liver fat contents did not differ (P > .10) among RPC levels. Supplementing RPC in high-concentrate diets improved performance, but results were not consistent among RPC levels or between cattle and sheep. Potential effects of RPC might be mediated through alterations in fat metabolism and(or) metabolic hormones related to fat metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.