Outbreaks of buffalopox or pox-like infections affecting buffaloes, cows and humans have been recorded in many parts of the world. Since the first outbreak in India, a large number of epidemics have occurred. Unlike in the previous years, generalized forms of the disease are now rare; however, there are severe local forms of the disease affecting the udder and teats, leading to mastitis thereby undermining the productivity of milk animals. The causative agent buffalopox virus (BPXV) is a member of the Orthopoxvirus, and is closely related to Vaccinia virus (VACV), the type-species of the genus. Earlier studies with restriction fragment length polymorphism and recent investigations involving sequencing of the genes that are essential in viral pathogenesis have shown that BPXV is phylogenetically very closely related to VACV and may be considered as a clade of the latter. The review discusses the epidemiology, novel diagnostic methods for the disease, and molecular biology of the virus, and infers genetic relationships of BPXV with other members of the genus.
Sheep pox and Goat pox are highly contagious viral diseases of small ruminants. These diseases were earlier thought to be caused by a single species of virus, as they are serologically indistinguishable. P32, one of the major immunogenic genes of Capripoxvirus, was isolated and Sequenced from two Indian isolates of goat poxvirus (GPV) and a vaccine strain of sheep poxvirus (SPV). The sequences were compared with other P32 sequences of capripoxviruses available in the database. Sequence analysis revealed that sheep pox and goat poxviruses share 97.5 and 94.7% homology at nucleotide and amino acid level, respectively. A major difference between them is the presence of an additional aspartic acid at 55th position of P32 of sheep poxvirus that is absent in both goat poxvirus and lumpy skin disease virus. Further, six unique neutral nucleotide substitutions were observed at positions 77, 275, 403, 552, 867 and 964 in the sequence of goat poxvirus, which can be taken as GPV signature residues. Similar unique nucleotide signatures could be identified in SPV and LSDV sequences also. Phylogenetic analysis showed that members of the Capripoxvirus could be delineated into three distinct clusters of GPV, SPV and LSDV based on the P32 genomic sequence. Using this information, a PCR-RFLP method has been developed for unequivocal genomic differentiation of SPV and GPV.
A single-tube one-step multiplex RT-PCR was standardized to amplify both 337 bp and 191 bp fragments of N and M genes of peste des petits ruminants virus (PPRV), respectively, and only a 337 bp fragment of N gene of Rinderpest virus (RPV). The RT-PCR using purified viral RNA was easily adopted for direct detection of PPRV in clinical field samples and its differentiation from RPV. The amplified N and M gene products were confirmed to be PPRV- and RPV-specific by their size in 1.5% agarose gel and restriction analysis. In the assay, the Qiagen one-step RT-PCR kit containing the Ominiscript and Sensiscript reverse transcriptases and Hot star Taq DNA polymerase was utilized. The sensitivity of the assay was found to be 100 fg of PPRV RNA. Compared with a two-step assay, the one-step assay is easier and time-saving as it requires just a single buffer for both reactions, reverse transcription (RT) and PCR. In experimentally infected goats, PPRV was detectable by the one-step RT-PCR in nasal and ocular swabs 7-17 days post infection (p.i.). and in oral swabs 7-15 days p.i. Out of 32 clinical field samples tested, 18 were positive by sandwich ELISA (S-ELISA), while 22 were positive by the one-step RT-PCR.
Peste des petits ruminants (PPR) is an acute, febrile, highly contagious and economically important viral disease of small ruminants. A polyclonal antibody based indirect ELISA was developed for detection of antibodies to PPR virus in the serum samples of goats and sheep using purified PPR viral antigen propagated in Vero cell culture. A threshold (cut-off) value was set as twice the mean of the negative population based on the distribution of known negative serum samples in respect of PPR virus antibodies in the test. A total of 1544 serum samples from goats and sheep were screened by indirect ELISA and competitive ELISA. The indirect ELISA compared very well with competitive ELISA, with a high degree of specificity (95.09%) and sensitivity (90.81%). When compared with virus neutralization test, the present assay had 100% specificity and 80% sensitivity. With serum samples, the assay could clearly differentiate animals from the infected population from uninfected ones. These results suggest that the indirect ELISA may be a good alternative tool to competitive ELISA for seroepidemiological surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.