Data from a number of different experimental measurements have been used to construct caloric curves for five different regions of nuclear mass. These curves are qualitatively similar and exhibit plateaus at the higher excitation energies. The limiting temperatures represented by the plateaus decrease with increasing nuclear mass and are in very good agreement with results of recent calculations employing either a chiral symmetry model or the Gogny interaction. This agreement strongly favors a soft equation of state. Evidence is presented that critical excitation energies and critical temperatures for nuclei can be determined over a large mass range when the mass variations inherent in many caloric curve measurements are taken into account.Comment: In response to referees comments we have improved the discussion of the figures and added a new figure showing the relationship between the effective level density and the excitation energy. The discussion has been reordered and comments are made on recent data which support the hypothesis of a mass dependence of caloric curve
We discuss experimental evidence for a nuclear phase transition driven by the different concentration of neutrons to protons. Different ratios of the neutron to proton concentrations lead to different critical points for the phase transition. This is analogous to the phase transitions occurring in 4 He-3 He liquid mixtures. We present experimental results which reveal the N/A (or Z/A) dependence of the phase transition and discuss possible implications of these observations in terms of the Landau Free Energy description of critical phenomena.
The reactions 12 Cϩ 116 Sn, 22 NeϩAg, 40 Arϩ 100 Mo, and 64 Znϩ 89 Y have been studied at 47A MeV projectile energy. For these reactions the most violent collisions lead to increasing amounts of fragment and light particle emission as the projectile mass increases. This is consistent with quantum molecular dynamics ͑QMD͒ model simulations of the collisions. Moving source fits to the light charged particle data have been used to gain a global view of the evolution of the particle emission. Comparisons of the multiplicities and spectra of light charged particles emitted in the reactions with the four different projectiles indicate a common emission mechanism for early emitted ejectiles even though the deposited excitation energies differ greatly. The spectra for such ejectiles can be characterized as emission in the nucleon-nucleon frame. Evidence that the 3 He yield is dominated by this type of emission and the role of the collision dynamics in determining the 3 H/ 3 He yield ratio are discussed. Self-consistent coalescence model analyses are applied to the light cluster yields, in an attempt to probe emitter source sizes and to follow the evolution of the temperatures and densities from the time of first particle emission to equilibration. These analyses exploit correlations between ejectile energy and emission time, suggested by the QMD calculations. In this analysis the degree of expansion of the emitting system is found to increase with increasing projectile mass. The double isotope yield ratio temperature drops as the system expands. Average densities as low as 0.36 0 are reached at a time near 100 fm/c after contact. Calorimetric methods were used to derive the mass and excitation energy of the excited nuclei which are present after preequilibrium emission. The derived masses range from 102 to 116 u and the derived excitation energies increase from 2.6 to 6.9 MeV/nucleon with increasing projectile mass. A caloric curve is derived for these expanded Aϳ110 nuclei. This caloric curve exhibits a plateau at temperatures near 7 MeV. The plateau extends from ϳ3.5 to 6.9 MeV/nucleon excitation energy.PACS number͑s͒: 25.70.Mn, 24.10.Lx
At finite temperatures and low densities, nuclei may undergo a phase change similar to a classical liquid-gas phase transition. Temperature is the control parameter while density and pressure are the conjugate variables. In the nucleus the difference between the proton and neutron concentrations acts as an additional order parameter, for which the symmetry potential is the conjugate variable. We present experimental results which reveal the N/Z dependence of the phase transition and discuss possible implications of these observations in terms of the Landau free energy description of critical phenomena.
An extensive experimental survey of the features of the disassembly of a small quasiprojectile system with A ∼ 36, produced in the reactions of 47 MeV/nucleon 40 Ar + 27 Al, 48 Ti, and 58 Ni, has been carried out. Nuclei in the excitation energy range of 1-9 MeV/nucleon have been investigated employing a new method to reconstruct the quasiprojectile source. At an excitation energy ∼5.6 MeV/nucleon many observables indicate the presence of maximal fluctuations in the deexcitation processes. These include the normalized second moments of the Campi plot and normalized variances of the distributions of order parameters such as the atomic number of the heaviest fragment Z max and the total kinetic energy. The evolution of the correlation of the atomic number of the heaviest fragment with that of the second heaviest fragment and a bimodality test are also consistent with a transition in the same excitation energy region. The related phase separation parameter, S p , shows a significant change of slope at the same excitation energy. In the same region a -scaling analysis for of the heaviest fragments exhibits a transition to = 1 scaling, which is predicted to characterize a disordered phase. The fragment topological structure shows that the rank-sorted fragments obey Zipf's law at the point of largest fluctuations, providing another indication of a liquid gas phase transition. The Fisher droplet model critical exponent τ ∼ 2.3 obtained from the charge distribution at the same excitation energy is close to the critical exponent of the liquid gas phase transition universality class. The caloric curve for this system shows a monotonic increase of temperature with excitation energy and no apparent plateau. The temperature at the point of maximal fluctuations is 8.3 ± 0.5 MeV. Taking this temperature as the critical temperature and employing the caloric curve information we have extracted the critical exponents β, γ , and σ from the data. Their values are also consistent with the values of the universality class of the liquid gas phase transition. Taken together, this body of evidence strongly suggests a phase change in an equilibrated mesoscopic system at, or extremely close to, the critical point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.