Results from regular monitoring of relativistic compact binaries like PSR 1913+16 are consistent with the dominant (quadrupole) order emission of gravitational waves (GWs). We show that observations associated with the binary black hole (BBH) central engine of blazar OJ287 demand the inclusion of gravitational radiation reaction effects beyond the quadrupolar order. It turns out that even the effects of certain hereditary contributions to GW emission are required to predict impact flare timings of OJ287. We develop an approach that incorporates this effect into the BBH model for OJ287. This allows us to demonstrate an excellent agreement between the observed impact flare timings and those predicted from ten orbital cycles of the BBH central engine model. The deduced rate of orbital period decay is nine orders of magnitude higher than the observed rate in PSR 1913+16, demonstrating again the relativistic nature of OJ287ʼs central engine. Finally, we argue that precise timing of the predicted 2019 impact flare should allow a test of the celebrated black hole "no-hair theorem" at the 10% level.
Detection of periodicity in the broad-band non-thermal emission of blazars has so far been proven to be elusive. However, there are a number of scenarios which could lead to quasi-periodic variations in blazar light curves. For example, orbital or thermal/viscous period of accreting matter around central supermassive black holes could, in principle, be imprinted in the multi-wavelength emission of small-scale blazar jets, carrying as such crucial information about plasma conditions within the jet launching regions. In this paper, we present the results of our time series analysis of ∼ 9.2 year-long, and exceptionally well-sampled optical light curve of the BL Lac OJ 287. The study primarily uses the data from our own observations performed at the Mt. Suhora and Kraków Observatories in Poland, and at the Athens Observatory in Greece. Additionally, SMARTS observations were used to fill in some of the gaps in the data. The Lomb-Scargle Periodogram and the Weighted Wavelet Z-transform methods were employed to search for the possible QPOs in the resulting optical light curve of the source. Both the methods consistently yielded possible quasi-periodic signal around the periods of ∼ 400 and ∼ 800 days, the former one with a significance (over the underlying colored noise) of ≥ 99%. A number of likely explanations for such are discussed, with a preference given to a modulation of the jet production efficiency by highly magnetized accretion disks. This supports the previous findings and the interpretation reported recently in the literature for OJ 287 and other blazar sources.
OpenBU http://open.bu.edu Astronomy BU Open Access Articles 2018-08-20 Stochastic modeling of multiwavelength variability of the classical BL Lac Object OJ287...
OJ 287 is a BL Lac object at redshift z= 0.306 that has shown double‐peaked bursts at regular intervals of ∼12 yr during the last ∼40 yr. We analyse optical photopolarimetric monitoring data from 2005 to 2009, during which the latest double‐peaked outburst occurred. The aim of this study is twofold: firstly, we aim to analyse variability patterns and statistical properties of the optical polarization light curve. We find a strong preferred position angle in optical polarization. The preferred position angle can be explained by separating the jet emission into two components: an optical polarization core and chaotic jet emission. The optical polarization core is stable on time‐scales of years and can be explained as emission from an underlying quiescent jet component. The chaotic jet emission sometimes exhibits a circular movement in the Stokes plane. We find six such events, all on the time‐scales of 10–20 d. We interpret these events as a shock front moving forwards and backwards in the jet, swiping through a helical magnetic field. Secondly, we use our data to assess different binary black hole models proposed to explain the regularly appearing double‐peaked bursts in OJ 287. We compose a list of requirements a model has to fulfil to explain the mysterious behaviour observed in OJ 287. The list includes not only characteristics of the light curve but also other properties of OJ 287, such as the black hole mass and restrictions on accretion flow properties. We rate all existing models using this list and conclude that none of the models is able to explain all observations. We discuss possible new explanations and propose a new approach to understanding OJ 287. We suggest that both the double‐peaked bursts and the evolution of the optical polarization position angle could be explained as a sign of resonant accretion of magnetic field lines, a ‘magnetic breathing’ of the disc.
Here we explore the disk-jet connection in the broad-line radio quasar 4C+74.26, utilizing the results of the multiwavelength monitoring of the source. The target is unique in that its radiative output at radio wavelengths is dominated by a moderately-beamed nuclear jet, at optical frequencies by the accretion disk, and in the hard X-ray range by the disk corona. Our analysis reveals a correlation (local and global significance of 96% and 98%, respectively) between the optical and radio bands, with the disk lagging behind the jet by 250 ± 42 days. We discuss the possible explanation for this, speculating that the observed disk and the jet flux changes are generated by magnetic fluctuations originating within the innermost parts of a truncated disk, and that the lag is related to a delayed radiative response of the disk when compared with the propagation timescale of magnetic perturbations along relativistic outflow. This scenario is supported by the re-analysis of the NuSTAR data, modelled in terms of a relativistic reflection from the disk illuminated by the coronal emission, which returns the inner disk radius R in /R ISCO = 35 +40 −16 . We discuss the global energetics in the system, arguing that while the accretion proceeds at the Eddington rate, with the accretion-related bolometric luminosity L bol ∼ 9 × 10 46 erg s −1 ∼ 0.2L Edd , the jet total kinetic energy L j ∼ 4 × 10 44 erg s −1 , inferred from the dynamical modelling of the giant radio lobes in the source, constitutes only a small fraction of the available accretion power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.