We have searched for solar axions or other pseudoscalar particles that couple to two photons by using the CERN Axion Solar Telescope (CAST) setup. Whereas we previously have reported results from CAST with evacuated magnet bores (Phase I), setting limits on lower mass axions, here we report results from CAST where the magnet bores were filled with 4 He gas (Phase II) of variable pressure. The introduction of gas generates a refractive photon mass m γ , thereby achieving the maximum possible conversion rate for those axion masses m a that match m γ . With 160 different pressure settings we have scanned m a up to about 0.4 eV, taking approximately 2 h of data for each setting. From the absence of excess X-rays when the magnet was pointing to the Sun, we set a typical upper limit on the axion-photon coupling of g aγ 2.2 × 10 −10 GeV −1 at 95% CL for m a 0.4 eV, the exact result depending on the pressure setting. The excluded parameter range covers realistic axion models with a Peccei-Quinn scale in the neighborhood of f a ∼ 10 7 GeV. Currently in the second part of CAST Phase II, we are searching for axions with masses up to about 1.2 eV using 3 He as a buffer gas.
New Experiments With Spheres-Gas (NEWS-G) is a direct dark matter detection experiment using SphericalProportional Counters (SPCs) with light noble gases to search for low-mass Weakly Interacting Massive Particles (WIMPs). We report the results from the first physics run taken at the Laboratoire Souterrain de Modane (LSM) with SEDINE, a 60 cm diameter prototype SPC operated with a mixture of Ne + CH 4 (0.7 %) at 3.1 bars for a total exposure of 9.7 kg · days. New constraints are set on the spin-independent WIMP-nucleon scattering cross-section in the sub-GeV/c 2 mass region. We exclude cross-sections above 4.4 × 10 −37 cm 2 at 90 % confidence level (C.L.) for a 0.5 GeV/c 2 WIMP. The competitive results obtained with SEDINE are promising for the next phase of the NEWS-G experiment: a 140 cm diameter SPC to be installed at SNOLAB by summer 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.