A search for the rare decay K L → π 0 νν was performed. With the data collected in 2015, corresponding to 2.2 × 10 19 protons on target, a single event sensitivity of ð1.30 AE 0.01 stat AE 0.14 syst Þ × 10 −9 was achieved and no candidate events were observed. We set an upper limit of 3.0 × 10 −9 for the branching fraction of K L → π 0 νν at the 90% confidence level (C.L.), which improved the previous limit by almost an order of magnitude. An upper limit for K L → π 0 X 0 was also set as 2.4 × 10 −9 at the 90% C.L., where X 0 is an invisible boson with a mass of 135 MeV=c 2 .
Three events for the decay K+-->pi+ nunu have been observed in the pion momentum region below the K+-->pi+pi0 peak, 140 < Ppi < 199 MeV/c, with an estimated background of 0.93+/-0.17(stat.) -0.24+0.32(syst.) events. Combining this observation with previously reported results yields a branching ratio of B(K+-->pi+ nunu) = (1.73(-1.05)+1.15) x 10(-10) consistent with the standard model prediction.
An additional event near the upper kinematic limit for K+-->pi(+)nunu; has been observed by experiment E949 at Brookhaven National Laboratory. Combining previously reported and new data, the branching ratio is B(K+-->pi(+)nunu;)=(1.47(+1.30)(-0.89))x10(-10) based on three events observed in the pion momentum region 211
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.