The 2012 explosion of SN 2009ip raises questions about our understanding of the late stages of massive star evolution. Here we present a comprehensive study of SN 2009ip during its remarkable re-brightening(s). Highcadence photometric and spectroscopic observations from the GeV to the radio band obtained from a variety of ground-based and space facilities (including the VLA, Swift, Fermi, HST and XMM) constrain SN 2009ip to be a low energy (E ∼ 10 50 erg for an ejecta mass ∼ 0.5 M ) and likely asymmetric explosion in a complex medium shaped by multiple eruptions of the restless progenitor star. Most of the energy is radiated as a result of the shock breaking out through a dense shell of material located at ∼ 5 × 10 14 cm with M ∼ 0.1 M , ejected by the precursor outburst ∼ 40 days before the major explosion. We interpret the NIR excess of emission as signature of dust vaporization of material located further out (R > 4 × 10 15 cm), the origin of which has to be connected with documented mass loss episodes in the previous years. Our modeling predicts bright neutrino emission associated with the shock break-out if the cosmic ray energy is comparable to the radiated energy. We connect this phenomenology with the explosive ejection of the outer layers of the massive progenitor star, that later interacted with material deposited in the surroundings by previous eruptions. Future observations will reveal if the luminous blue variable (LBV) progenitor star survived. Irrespective of whether the explosion was terminal, SN 2009ip brought to light the existence of new channels for sustained episodic mass-loss, the physical origin of which has yet to be identified.
Although photometric and spectroscopic surveys with the Spitzer Space Telescope increased remarkably the number of well studied debris disks around A-type and Sun-like stars, detailed analyzes of debris disks around F-type stars remained less frequent. Using the MIPS camera and the IRS spectrograph we searched for debris dust around 82 F-type stars with Spitzer. We found 27 stars that harbor debris disks, nine of which are new discoveries. The dust distribution around two of our stars, HD 50571 and HD 170773, was found to be marginally extended on the 70µm MIPS images. Combining the MIPS and IRS measurements with additional infrared and submillimeter data, we achieved excellent spectral coverage for most of our debris systems. We have modeled the excess emission of 22 debris disks using a single temperature dust ring model and of 5 debris systems with two-temperature models. The latter systems may contain two dust rings around the star. In accordance with the expected trends, the fractional luminosity of the disks declines with time, exhibiting a decay rate consistent with the range of model predictions. We found the distribution of radial dust distances as a function of age to be consistent with the predictions of both the self stirred and the planetary stirred disk evolution models. A more comprehensive investigation of the evolution of debris disks around F-type stars, partly based on the presented data set, will be the subject of an upcoming paper.
High-velocity features" (HVFs) are spectral features in Type Ia supernovae (SNe Ia) that have minima indicating significantly higher (by greater than about 6000 km s −1 ) velocities than typical "photospheric-velocity features" (PVFs). The PVFs are absorption features with minima indicating typical photospheric (i.e., bulk ejecta) velocities (usually ∼9000-15,000 km s −1 near B-band maximum brightness). In this work we undertake the most in-depth study of HVFs ever performed. The dataset used herein consists of 445 low-resolution optical and near-infrared (NIR) spectra (at epochs up to 5 d past maximum brightness) of 210 low-redshift SNe Ia that follow the "Phillips relation." A series of Gaussian functions is fit to the data in order to characterise possible HVFs of Ca II H&K, Si II λ6355, and the Ca II NIR triplet. The temporal evolution of the velocities and strengths of the PVFs and HVFs of these three spectral features is investigated, as are possible correlations with other SN Ia observables. We find that while HVFs of Ca II are regularly observed (except in underluminous SNe Ia, where they are never found), HVFs of Si II λ6355 are significantly rarer, and they tend to exist at the earliest epochs and mostly in objects with large photospheric velocities. It is also shown that stronger HVFs of Si II λ6355 are found in objects that lack C II absorption at early times and that have red ultraviolet/optical colours near maximum brightness. These results lead to a self-consistent connection between the presence and strength of HVFs of Si II λ6355 and many other mutually correlated SN Ia observables, including photospheric velocity.
New BV RI photometry and optical spectroscopy of the Type IIp supernova 2004dj in NGC 2403, obtained during the first year since discovery, are presented. The progenitor cluster, Sandage 96, is also detected on pre-explosion frames. The light curve indicates that the explosion occurred about 30 d before discovery, and the plateau phase lasted about +110 ± 20 d after that. The plateau-phase spectra have been modelled with the SYNOW spectral synthesis code using H, Na I, Ti II, Sc II, Fe II and Ba I lines. The SN distance is inferred from the expanding photosphere method and the standard candle method applicable for SNe IIp. They resulted in distances that are consistent with each other as well as earlier Cepheid and Tully-Fisher distances. The average distance, D = 3.47 ± 0.29 Mpc is proposed for SN 2004dj and NGC 2403. The nickel mass produced by the explosion is estimated as ∼0.02 ± 0.01 M . The spectral energy distribution of the progenitor cluster is reanalysed by fitting population synthesis models to our observed BV RI data supplemented by U and JHK magnitudes from the literature. The χ 2 minimization revealed a possible 'young' solution with cluster age T cl = 8 Myr, and an 'old' solution with T cl = 20-30 Myr. The 'young' solution would imply a progenitor mass M > 20 M , which is higher than the previously detected progenitor masses for Type II SNe.
KOI-13 is the first known transiting system exhibiting light curve distortions due to gravity darkening of the rapidly rotating host star. In this paper we analyse publicly available Kepler Q2-Q3 short-cadence observations, revealing a continuous light variation with a period of P rot = 25.43 ± 0.05 hour and a half-amplitude of 21 ppm, which is linked to stellar rotation. This period is in exact 5:3 resonance with the orbit of KOI-13.01, which is the first detection of a spin-orbit resonance in a host of a substellar companion. The stellar rotation leads to stellar oblateness, which is expected to cause secular variations in the orbital elements. We indeed detect the gradual increment of the transit duration with a rate of (1.14 ± 0.30) × 10 −6 day/cycle. The confidence of this trend is 3.85-σ, the two-sided false alarm probability is 0.012%. We suggest that the reason for this variation is the expected change of the impact parameter, with a rate of db/dt = −0.016 ± 0.004/yr. Assuming b ≈ 0.25, KOI-13.01 may become a nontransiting object in 75 − 100 years. The observed rate is compatible with the expected secular perturbations due to the stellar oblateness yielded by the fast rotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.