Improved gas exchange has been observed during spontaneous breathing with airway pressure release ventilation (APRV) as compared with controlled mechanical ventilation. This study was designed to determine whether use of APRV with spontaneous breathing as a primary ventilatory support modality better prevents deterioration of cardiopulmonary function than does initial controlled mechanical ventilation in patients at risk for acute respiratory distress syndrome (ARDS). Thirty patients with multiple trauma were randomly assigned to either breathe spontaneously with APRV (APRV Group) (n = 15) or to receive pressure-controlled, time-cycled mechanical ventilation (PCV) for 72 h followed by weaning with APRV (PCV Group) (n = 15). Patients maintained spontaneous breathing during APRV with continuous infusion of sufentanil and midazolam (Ramsay sedation score [RSS] of 3). Absence of spontaneous breathing (PCV Group) was induced with sufentanil and midazolam (RSS of 5) and neuromuscular blockade. Primary use of APRV was associated with increases (p < 0.05) in respiratory system compliance (CRS), arterial oxygen tension (PaO2), cardiac index (CI), and oxygen delivery (DO2), and with reductions (p < 0.05) in venous admixture (QVA/QT), and oxygen extraction. In contrast, patients who received 72 h of PCV had lower CRS, PaO2, CI, DO2, and Q VA/Q T values (p < 0.05) and required higher doses of sufentanil (p < 0.05), midazolam (p < 0.05), noradrenalin (p < 0.05), and dobutamine (p < 0.05). CRS, PaO2), CI and DO2 were lowest (p < 0.05) and Q VA/Q T was highest (p < 0.05) during PCV. Primary use of APRV was consistently associated with a shorter duration of ventilatory support (APRV Group: 15 +/- 2 d [mean +/- SEM]; PCV Group: 21 +/- 2 d) (p < 0.05) and length of intensive care unit (ICU) stay (APRV Group: 23 +/- 2 d; PCV Group: 30 +/- 2 d) (p < 0.05). These findings indicate that maintaining spontaneous breathing during APRV requires less sedation and improves cardiopulmonary function, presumably by recruiting nonventilated lung units, requiring a shorter duration of ventilatory support and ICU stay.
Introduction The development of resistance by bacterial species is a compelling issue to reconsider indications and administration of antibiotic treatment. Adequate indications and duration of therapy are particularly important for the use of highly potent substances in the intensive care setting. Until recently, no laboratory marker has been available to differentiate bacterial infection from viral or non-infectious inflammatory reaction; however, over the past years, procalcitonin (PCT) is the first among a large array of inflammatory variables that offers this possibility. The present study aimed to investigate the clinical usefulness of PCT for guiding antibiotic therapy in surgical intensive care patients.
Monitoring of PCT is a helpful tool for guiding antibiotic treatment in surgical intensive care patients with severe sepsis. This may contribute to an optimized antibiotic regimen with beneficial effects on microbial resistances and costs in intensive care medicine.
Initiation of mechanical ventilation for 1 h in patients without previous lung injury caused no consistent changes in plasma levels of studied mediators. Mechanical ventilation with high V(T) on ZEEP did not result in higher cytokine levels compared with lung-protective ventilatory strategies. Previous lunge damage seems to be mandatory to cause an increase in plasma cytokines after 1 h of high V(T) mechanical ventilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.