Oxygen depleted hypoxic regions in the tumour are generally resistant to therapies1. Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour2 of magnetotactic bacteria3, Magnetococcus marinus strain MC-14, can be used to transport drug-loaded nanoliposomes into hypoxic regions of the tumour. In their natural environment, MC-1 cells, each containing a chain of magnetic iron-oxide nanocrystals5, tend to swim along local magnetic field lines and towards low oxygen concentrations6 based on a two-state aerotactic sensing system2. We show that when MC-1 cells bearing covalently bound drug-containing nanoliposomes were injected near the tumour in SCID Beige mice and magnetically guided, up to 55% of MC-1 cells penetrated into hypoxic regions of HCT116 colorectal xenografts. Approximately 70 drug-loaded nanoliposomes were attached to each MC-1 cell. Our results suggest that harnessing swarms of microorganisms exhibiting magneto-aerotactic behaviour can significantly improve the therapeutic index of various nanocarriers in tumour hypoxic regions.
Radiotherapy has been driven by constant technological advances since the discovery of X-rays in 1895. Radiotherapy aims to sculpt the optimal isodose on the tumour volume while sparing normal tissues. The benefits are threefold: patient cure, organ preservation and cost-efficiency. The efficacy and tolerance of radiotherapy were demonstrated by randomized trials in many different types of cancer (including breast, prostate and rectum) with a high level of scientific evidence. Such achievements, of major importance for the quality of life of patients, have been fostered during the past decade by linear accelerators with computer-assisted technology. More recently, these developments were augmented by proton and particle beam radiotherapy, usually combined with surgery and medical treatment in a multidisciplinary and personalized strategy against cancer. This article reviews the timeline of 100 years of radiotherapy with a focus on breakthroughs in the physics of radiotherapy and technology during the past two decades, and the associated clinical benefits.
Megavoltage x-ray beams exhibit the well-known phenomena of dose buildup within the first few millimeters of the incident phantom surface, or the skin. Results of the surface dose measurements, however, depend vastly on the measurement technique employed. Our goal in this study was to determine a correction procedure in order to obtain an accurate skin dose estimate at the clinically relevant depth based on radiochromic film measurements. To illustrate this correction, we have used as a reference point a depth of 70 micron. We used the new GAFCHROMIC dosimetry films (HS, XR-T, and EBT) that have effective points of measurement at depths slightly larger than 70 micron. In addition to films, we also used an Attix parallel-plate chamber and a home-built extrapolation chamber to cover tissue-equivalent depths in the range from 4 micron to 1 mm of water-equivalent depth. Our measurements suggest that within the first millimeter of the skin region, the PDD for a 6 MV photon beam and field size of 10 x 10 cm2 increases from 14% to 43%. For the three GAFCHROMIC dosimetry film models, the 6 MV beam entrance skin dose measurement corrections due to their effective point of measurement are as follows: 15% for the EBT, 15% for the HS, and 16% for the XR-T model GAFCHROMIC films. The correction factors for the exit skin dose due to the build-down region are negligible. There is a small field size dependence for the entrance skin dose correction factor when using the EBT GAFCHROMIC film model. Finally, a procedure that uses EBT model GAFCHROMIC film for an accurate measurement of the skin dose in a parallel-opposed pair 6 MV photon beam arrangement is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.