We present pySecDec, a new version of the program SecDec, which performs the factorisation of dimensionally regulated poles in parametric integrals, and the subsequent numerical evaluation of the finite coefficients. The algebraic part of the program is now written in the form of python modules, which allow a very flexible usage. The optimization of the C++ code, generated using FORM, is improved, leading to a faster numerical convergence. The new version also creates a library of the integrand functions, such that it can be linked to user-specific codes for the evaluation of matrix elements in a way similar to analytic integral libraries. (2015) 470-491. Nature of the problem: Extraction of ultraviolet and infrared singularities from parametric integrals appearing in higher order perturbative calculations in quantum field theory. Numerical integration in the presence of integrable singularities (e.g. kinematic thresholds). Solution method: Algebraic extraction of singularities within dimensional regularization using iterated sector decomposition. This leads to a Laurent series in the dimensional regularization parameter (and optionally other regulators), where the coefficients are finite integrals over the unit-hypercube. Those integrals are evaluated numerically by Monte Carlo integration. The integrable singularities are handled by choosing a suitable integration contour in the complex plane, in an automated way. The parameter integrals forming the coefficients of the Laurent series in the regulator(s) are provided in the form of libraries which can be linked to the calculation of (multi-) loop amplitudes. Restrictions: Depending on the complexity of the problem, limited by memory and CPU time. Running time: Between a few seconds and several days, depending on the complexity of the problem.
Abstract:We study the effects of the exact top quark mass-dependent two-loop corrections to Higgs boson pair production by gluon fusion at the LHC and at a 100 TeV hadron collider. We perform a detailed comparison of the full next-to-leading order result to various approximations at the level of differential distributions and also analyse non-standard Higgs self-coupling scenarios. We find that the different next-to-leading order approximations differ from the full result by up to 50 percent in relevant differential distributions. This clearly stresses the importance of the full NLO result.
SecDec is a program which can be used for the factorization of dimensionally regulated poles from parametric integrals, in particular multi-loop integrals, and the subsequent numerical evaluation of the finite coefficients. Here we present version 3.0 of the program, which has major improvements compared to version 2: it is faster, contains new decomposition strategies, an improved user interface and various other new features which extend the range of applicability. Extraction of ultraviolet and infrared singularities from parametric integrals appearing in higher order perturbative calculations in gauge theories. Numerical integration in the presence of integrable singularities (e.g. kinematic thresholds). Solution method: Algebraic extraction of singularities within dimensional regularization using iterated sector decomposition. This leads to a Laurent series in the dimensional regularization parameter , where the coefficients are finite integrals over the unit-hypercube. Those integrals are evaluated numerically by Monte Carlo integration. The integrable singularities are handled by choosing a suitable integration contour in the complex plane, in an automated way. Restrictions: Depending on the complexity of the problem, limited by memory and CPU time. Running time:Between a few seconds and several hours, depending on the complexity of the problem.
Novel contributions to the total inclusive cross section for Higgs-Strahlung in the Standard Model at hadron colliders are evaluated. Although formally of order α 2 s , they have not been taken into account in previous NNLO predictions. The terms under consideration are induced by Higgs radiation off top-quark loops and thus proportional to the top-quark Yukawa coupling. At the Tevatron, their effects to WH production are below 1% in the relevant Higgs mass range, while for ZH production, we find corrections between about 1% and 2%. At the LHC, the contribution of the newly evaluated terms to the cross section is typically of the order of 1%-3%. Based on these results, we provide updated predictions for the total inclusive Higgs-Strahlung cross section at the Tevatron and the LHC.
We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.