BackgroundThe importance of Cryptosporidium as a pediatric enteropathogen in developing countries is recognized.MethodsData from the Global Enteric Multicenter Study (GEMS), a 3-year, 7-site, case-control study of moderate-to-severe diarrhea (MSD) and GEMS-1A (1-year study of MSD and less-severe diarrhea [LSD]) were analyzed. Stools from 12,110 MSD and 3,174 LSD cases among children aged <60 months and from 21,527 randomly-selected controls matched by age, sex and community were immunoassay-tested for Cryptosporidium. Species of a subset of Cryptosporidium-positive specimens were identified by PCR; GP60 sequencing identified anthroponotic C. parvum. Combined annual Cryptosporidium-attributable diarrhea incidences among children aged <24 months for African and Asian GEMS sites were extrapolated to sub-Saharan Africa and South Asian regions to estimate region-wide MSD and LSD burdens. Attributable and excess mortality due to Cryptosporidium diarrhea were estimated.FindingsCryptosporidium was significantly associated with MSD and LSD below age 24 months. Among Cryptosporidium-positive MSD cases, C. hominis was detected in 77.8% (95% CI, 73.0%-81.9%) and C. parvum in 9.9% (95% CI, 7.1%-13.6%); 92% of C. parvum tested were anthroponotic genotypes. Annual Cryptosporidium-attributable MSD incidence was 3.48 (95% CI, 2.27–4.67) and 3.18 (95% CI, 1.85–4.52) per 100 child-years in African and Asian infants, respectively, and 1.41 (95% CI, 0.73–2.08) and 1.36 (95% CI, 0.66–2.05) per 100 child-years in toddlers. Corresponding Cryptosporidium-attributable LSD incidences per 100 child-years were 2.52 (95% CI, 0.33–5.01) and 4.88 (95% CI, 0.82–8.92) in infants and 4.04 (95% CI, 0.56–7.51) and 4.71 (95% CI, 0.24–9.18) in toddlers. We estimate 2.9 and 4.7 million Cryptosporidium-attributable cases annually in children aged <24 months in the sub-Saharan Africa and India/Pakistan/Bangladesh/Nepal/Afghanistan regions, respectively, and ~202,000 Cryptosporidium-attributable deaths (regions combined). ~59,000 excess deaths occurred among Cryptosporidium-attributable diarrhea cases over expected if cases had been Cryptosporidium-negative.ConclusionsThe enormous African/Asian Cryptosporidium disease burden warrants investments to develop vaccines, diagnostics and therapies.
BackgroundOver 5 million stillbirths and neonatal deaths occur annually. Limited and imprecise information on the cause of these deaths hampers progress in achieving global health targets. Complete diagnostic autopsies (CDAs)—the gold standard for cause of death determination—are difficult to perform in most high-burden settings. Therefore, validation of simpler and more feasible methods is needed.Methods and findingsIn this observational study, the validity of a minimally invasive autopsy (MIA) method in determining the cause of death was assessed in 18 stillbirths and 41 neonatal deaths by comparing the results of the MIA with those of the CDA. Concordance between the categories of diseases obtained by the 2 methods was assessed by the Kappa statistic, and the sensitivity, specificity, positive, and negative predictive values of the MIA diagnoses were calculated. A cause of death was identified in 16/18 (89%) and 15/18 (83%) stillborn babies in the CDA and the MIA, respectively. Fetal growth restriction accounted for 39%, infectious diseases for 22%, intrapartum hypoxia for 17%, and intrauterine hypoxia for 11% of stillborn babies. Overall, the MIA showed in this group a substantial concordance with the CDA (Kappa = 0.78, 95% CI [0.56–0.99]). A cause of death was identified in all (100%) and 35/41 (85%) neonatal deaths in the CDA and the MIA, respectively. In this group, the majority of deaths were due to infectious diseases (66%). The overall concordance of the MIA with the CDA in neonates was moderate (Kappa = 0.40, 95% CI [0.18–0.63]). A high percentage of accuracy was observed for the MIA in all the diagnostic categories in both stillbirths and neonates (>75%). The main limitation of this study is that some degree of subjective interpretation is inherent to cause-of-death attribution in both the MIA and the CDA; this is especially so in stillbirths and in relation to fetal growth restriction.ConclusionsThe MIA could be a useful tool for cause-of-death determination in stillbirths and neonatal deaths. These findings may help to accelerate progress towards meeting global health targets by obtaining more accurate information on the causes of death in these age groups, which is essential in guiding the design of new interventions and increasing the effectiveness of those already implemented.
Background Sub-Saharan Africa and south Asia contributed 81% of 5•9 million under-5 deaths and 77% of 2•6 million stillbirths worldwide in 2015. Vital registration and verbal autopsy data are mainstays for the estimation of leading causes of death, but both are non-specific and focus on a single underlying cause. We aimed to provide granular data on the contributory causes of death in stillborn fetuses and in deceased neonates and children younger than 5 years, to inform child mortality prevention efforts. Methods The Child Health and Mortality Prevention Surveillance (CHAMPS) Network was established at sites in seven countries (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.