For bioremediation of organically enriched sediment deposited below fish farms, the extremely high potential for population growth of a deposit-feeding polychaete, Capitella sp. I, in the organically enriched sediment, and the effect on decomposition of organic matter in the sediment, were examined. A mass-culturing technique was conducted for this species. Bioremediation experiments were conducted on the organically enriched sediment in a fish farm in Kusuura Bay, Japan in 2003-2006. Approximately 1.7 million individuals of the worms were placed on the sediment below one net pen in December 2003, 9.3 million individuals in November 2004, and 2.2 million individuals in November 2005. After the worms were spread on the sediment, they rapidly increased in number and reached the highest densities of approximately 134 000 inds/m 2 in February 2004, 527 000 inds/m 2 in March 2005 and 103 000 inds/m 2 in January 2006.In the process of rapid population growth, the decomposition of the organic matter of the sediment was enhanced markedly. Our results demonstrate that the promotion of population growth by spreading cultured colonies of Capitella can enhance the decomposition rate of organic matter markedly in organically enriched sediment below fish farms. This method is promising for minimization of the negative effects of fish farms.
Abstract. Only a handful of non-human animals are known to grow their own food by cultivating high-yield fungal or algal crops as staple food. Here we report an alternative strategy utilized by an omnivorous marine worm, Hediste diversicolor, to supplement its diet: gardening by sprouting seeds. In addition to having many other known feeding modes, we showed using video recordings and manipulative mesocosm experiments that this species can also behave like gardeners by deliberately burying cordgrass seeds in their burrows, which has been previously shown to reduce the loss of seeds to water. These seeds, however, are protected by the seed husk, and we used feeding experiments to show that they were not edible for H. diversicolor until they had sprouted or the seed husk had been artificially removed. Additionally, sprouts were shown to be highly nutritious, permitting higher growth rates in H. diversicolor than the low-quality basal food, detritus. We propose both a proximate cause (seed husk as a physical barrier) and ultimate cause (nutritional demand) for this peculiar feeding behavior. Our findings suggest that sprouting may be a common strategy used by seed-collecting animals to exploit nutrients from well-protected seeds.
Dysregulation of the gut microbiome is associated with dementia. However, the relationship between microbiome-associated metabolites and dementia has yet to be identified. Outpatients visiting a memory clinic in Japan enrolled in this cross-sectional study; 107 subjects were eligible for the study, 25 of which had dementia. We collected demographics, activities of daily living, risk factors, cognitive function, and brain imaging data. the gut microbiome was assessed using terminal restriction fragment length polymorphism analysis. Concentrations of faecal metabolite were measured. We used multivariable logistic regression analyses to identify whether metabolites were independently related to dementia. The concentrations of metabolites were significantly different between subjects with and those without dementia. Every 1 standard deviation increment in faecal ammonia concentration was associated with around a 1.6-fold risk for the presence of dementia. A higher faecal lactic acid concentration was related to a lower risk of dementia, by around 60%. A combination of higher faecal ammonia and lactic acid concentrations was indicative of the presence of dementia, and had a similar predictive value as traditional biomarkers of dementia. thus, faecal ammonia and lactic acid are related to dementia, independently of the other risk factors for dementia and dysregulation of the gut microbiome. An estimated 47 million people worldwide were living with dementia in 2015, and this number is expected to triple by 2050 1. The number of patients with dementia in Japan is also increasing, and an estimated 20% of the over-65 Japanese population will have dementia in the mid-2020s 2. Therefore, a comprehensive strategy for dementia research has been introduced in Japan 3. This strategy aims to promote social awareness of dementia, employ multifactorial assessments of clinical data, and determine the unknown risk of dementia, which could alleviate the increasing burden of dementia in Japan's ageing population. Recent research has identified novel associations between the gut microbiome and dementia 4-7. Such work has suggested that the gut microbiome contributes to amyloid deposition, a strong risk factor for Alzheimer's Disease (AD) 6 , and modulates host brain function via a microbiome-gut-brain axis 5,7. Furthermore, dysregulation of the gut microbiome increases the risk of dementia independent of the other traditional risk factors 4. The presence of bacterial products, such as microbiome-associated metabolites, in the systemic circulation may also increase inflammation which could lead to dementia 8. Nevertheless, it is not yet known how the gut microbiome and microbiome-associated metabolites affect cognitive function, and there have been conflicting findings regarding this association between the gut microbiome and dementia. For example, both decreased 4,5 and increased 6 proportions of Bacteroides have been reported in patients with dementia. Furthermore, while some work has indicated the effects of Bacteroides could increase...
Two strains of previously unknown Gram-negative cocci, T1-7T and S6-16, were isolated from the oral cavity of healthy Japanese children. The two strains showed atypical phenotypic characteristics of members of the genus Veillonella , including catalase production. Sequencing of their 16S rRNA genes confirmed that they belong to genus Veillonella . Under anaerobic conditions, the two strains produced acetic acid and propionic acid as metabolic end-products in a trypticase–yeast extract–haemin medium containing 1 % (w/v) glucose, 1 % (w/v) fructose and 1 % (v/v) sodium lactate. Comparative analysis of the 16S rRNA, dnaK, rpoB and gltA gene sequences revealed that the two strains are phylogenetically homogeneous and comprise a distinct, novel lineage within the genus Veillonella . The sequences from the two strains shared the highest similarity, at 99.9, 95.8, 96.9 and 96.7 %, using the partial 16S rRNA, dnaK, rpoB and gltA gene sequences, respectively, with the type strains of the two most closely related species, Veillonella dispar ATCC 17748T and Veillonella infantium JCM 31738T. Furthermore, strain T1-7T shared the highest average nucleotide identity (ANI) value (94.06 %) with type strain of the most closely related species, V. infantium . At the same time, strain T1-7T showed the highest digital DNA–DNA hybridization (dDDH) value (55.5 %) with the type strain of V. infantium . The two strains reported in this study were distinguished from the previously reported species from the genus Veillonella based on catalase production, partial dnaK, rpoB and gltA sequences, average ANI and dDDH values. Based on these observations, the two strains represent a novel species, for which the name Veillonella nakazawae sp. nov. is proposed. The type strain is T1-7T (JCM 33966T=CCUG 74597T).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.