The formation and structural characteristics of slowly digestible non‐pasted granular starch in sweet potato starch were investigated under various hydrothermal treatment conditions. The moisture content of the sweet potato starch was adjusted to 20, 50 or 90%, and the starch was heated at 40, 55 or 100°C for 12 h in a dry oven. The relative crystallinity of the hydrothermally treated samples was decreased with increasing temperature, and the X‐ray diffraction patterns of the samples were altered from Cb‐type to A‐type. Microscopic observations did not reveal any changes in the starch granules of any samples except those with moisture contents of 50 and 90% that were heated at 100°C. When gelatinization parameters were examined, samples with moisture contents of 50 and 90% that were heated at 55°C and samples of all moisture contents that were heated at 100°C had peak temperatures higher than that of raw starch but gelatinization enthalpies lower than that of raw starch. The swelling factor of the samples heated at 40°C did not change significantly, whereas that of samples heated at 55 and 100°C was decreased at increased moisture levels. The sweet potato starch with 50% moisture content that was heated at 55°C had the highest content of granular slowly digestible starch, about 200% that of raw starch, although our study did not involve further hydrothermal treatment conditions. Further study is required to complete a process for more efficient production of heat stable and slowly digestible starch.
Effects of debranching time, storage time, and storage temperature on production and structural properties of slowly digestible starch (SDS) were investigated. Waxy sorghum starch was hydrolyzed by isoamylase for various times (0–24 hr), and the variously debranched products were stored at ‐30, 1, and 30°C for 1–6 days. Optimal conditions for SDS production were isoamylase treatment for 8 hr and storage at 1°C for three days, resulting in SDS content of 27.0% in the optimum product. Microscopic observation revealed that rapidly digestible starch (RDS) and SDS were removed from the edges and surfaces of the optimum product by α‐amylase digestion. Digestion conditions that removed RDS and SDS resulted in a residue with a higher transition temperature and enthalpy than raw starch on a differential scanning calorimetric thermogram. Removal of RDS alone did not cause distinct decrements of peak temperature (Tp) and enthalpy (ΔH) compared with stored starch. The optimum SDS product showed an amorphous type of X‐ray diffractogram. Digestive removal of RDS from the optimum product gave a residue with X‐ray peaks similar to B type, which supports that it is partly crystalline. Removal of RDS and SDS gave broader peaks in the X‐ray pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.