Curcumin, a natural, biologically active compound extracted from rhizomes of Curcuma species, has been shown to possess potent anti-inflammatory, anti-tumor and anti-oxidative properties. The mechanism by which curcumin initiates apoptosis remains poorly understood. In the present report we investigated the effect of curcumin on the activation of the apoptotic pathway in human renal Caki cells. Treatment of Caki cells with 50 microM curcumin resulted in the activation of caspase 3, cleavage of phospholipase C-gamma1 and DNA fragmentation. Curcumin-induced apoptosis is mediated through the activation of caspase, which is specifically inhibited by the caspase inhibitor, benzyloxycarbony-Val-Ala-Asp-fluoromethyl ketone. Curcumin causes dose-dependent apoptosis and DNA fragmentation of Caki cells, which is preceded by the sequential dephosphorylation of Akt, down-regulation of the anti-apoptotic Bcl-2, Bcl-XL and IAP proteins, release of cytochrome c and activation of caspase 3. Cyclosporin A, as well as caspase inhibitor, specifically inhibit curcumin-induced apoptosis in Caki cells. Pre-treatment with N-acetyl-cysteine, markedly prevented dephosphorylation of Akt, and cytochrome c release, and cell death, suggesting a role for reactive oxygen species in this process. The data indicate that curcumin can cause cell damage by inactivating the Akt-related cell survival pathway and release of cytochrome c, providing a new mechanism for curcumin-induced cytotoxicity.
Mast cells participate in allergy and inflammation by secreting inflammatory mediators such as histamine and proinflammatory cytokines. Flavonoids are naturally occurring molecules with antioxidant, cytoprotective, and antiinflammatory actions. However, effect of flavonoids on the release of histamine and proinflammatory mediator, and their comparative mechanism of action in mast cells were not well defined. Here, we compared the effect of six flavonoids (astragalin, fisetin, kaempferol, myricetin, quercetin, and rutin) on the mast cell-mediated allergic inflammation. Fisetin, kaempferol, myricetin, quercetin, and rutin inhibited IgE or phorbol-12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-mediated histamine release in RBL-2H3 cells. These five flavonoids also inhibited elevation of intracellular calcium. Gene expressions and secretion of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, IL-6, and IL-8 were assessed in PMACI-stimulated human mast cells (HMC-1). Fisetin, quercetin, and rutin decreased gene expression and production of all the proinflammatory cytokines after PMACI stimulation. Myricetin attenuated TNF-alpha and IL-6 but not IL-1beta and IL-8. Fisetin, myricetin, and rutin suppressed activation of NF-kappaB indicated by inhibition of nuclear translocation of NF-kappaB, NF-kappaB/DNA binding, and NF-kappaB-dependent gene reporter assay. The pharmacological actions of these flavonoids suggest their potential activity for treatment of allergic inflammatory diseases through the down-regulation of mast cell activation.
Curcumin exhibits anti-inflammatory and antitumor activities. Although its functional mechanism has not been elucidated so far, numerous studies have shown that curcumin induces apoptosis in cancer cells. In the present study, we show that subtoxic concentrations of curcumin sensitize human renal cancer cells to the tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-mediated apoptosis. This apoptosis induced by the combination of curcumin and TRAIL is not interrupted by Bcl-2 overexpression. We found that treatment with curcumin significantly induces death receptor 5 (DR5) expression both at its mRNA and protein levels, accompanying the generation of the reactive oxygen species (ROS). Not only the pretreatment with N-acetylcystine but also the ectopic expression of peroxiredoxin II, an antioxidative protein, dramatically inhibited the apoptosis induced by curcumin and TRAIL in combination, blocking the curcumin-mediated DR5 upregulation. Taken together, the present study demonstrates that curcumin enhances TRAIL-induced apoptosis by ROS-mediated DR5 upregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.