Background Pulmonary arterial hypertension (PAH) is a severe and progressive disease, a hallmark of which is pulmonary vascular remodeling. Nicotinamide phosphoribosyltransferase (NAMPT), is a cytozyme which regulates intracellular NAD levels and cellular redox state, regulates histone deacetylases, promotes cell proliferation and inhibits apoptosis. We hypothesized that NAMPT promotes pulmonary vascular remodeling, and that inhibition of NAMPT could attenuate pulmonary hypertension. Methods Plasma and mRNA and protein levels of NAMPT were measured in the lungs and isolated pulmonary artery endothelial cells (PAECs) from PAH patients, as well as in lungs of rodent models of pulmonary hypertension (PH). Nampt+/− mice were exposed 10% hypoxia and room air for 4 weeks and the preventive and therapeutic effects of NAMPT inhibition were tested in the monocrotaline and Sugen-hypoxia models of PH. The effects on NAMPT activity on proliferation, migration, apoptosis and calcium signaling were tested in human pulmonary artery smooth muscle cell (hPASMC). Results Plasma and mRNA and protein levels of NAMPT were increased in the lungs and isolated pulmonary artery endothelial cells (PAECs) from PAH patients, as well as in lungs of rodent models of pulmonary hypertension (PH). Nampt+/− mice were protected from hypoxia-mediated PH. NAMPT activity promoted human pulmonary artery smooth muscle cell (hPASMC) proliferation via a paracrine effect. In addition, recombinant NAMPT stimulated hPASMC proliferation via enhancement of store-operated calcium entry by enhancing expression of Orai2 and STIM2. Finally, inhibition of NAMPT activity attenuated monocrotaline and Sugen hypoxia induced PH in rats. Conclusions Our data provide evidence that NAMPT plays a role in pulmonary vascular remodeling and its inhibition could be a potential therapeutic target for PAH.
Aims Activity in the amygdala, a brain centre involved in the perception of and response to stressors, associates with: (i) heightened sympathetic nervous system and inflammatory output and (ii) risk of cardiovascular disease. We hypothesized that the amygdalar activity (AmygA) ratio is heightened among individuals who develop Takotsubo syndrome (TTS), a heart failure syndrome often triggered by acute stress. We tested the hypotheses that (i) heightened AmygA precedes development of TTS and (ii) those with the highest AmygA develop the syndrome earliest. Methods and results Individuals (N=104, median age 67.5 years, 72% female, 86% with malignancy) who underwent clinical 18 F-FDG-PET/CT imaging were retrospectively identified: 41 who subsequently developed TTS and 63 matched controls (median follow-up 2.5 years after imaging). AmygA was measured using validated methods. Individuals with (vs. without) subsequent TTS had higher baseline AmygA (P=0.038) after adjusting for TTS risk factors. Further, AmygA associated with the risk for subsequent TTS after adjustment for risk factors [standardized hazard ratio (95% confidence interval): 1.643 (1.189, 2.270), P=0.003]. Among the subset of individuals who developed TTS, those with the highest AmygA (>mean + 1 SD) developed TTS ∼2 years earlier after imaging vs. those with lower AmygA (P=0.028). Conclusion Higher AmygA associates with an increased risk for TTS among a retrospective population with a high rate of malignancy. This heightened neurobiological activity is present years before the onset of TTS and may impact the timing of the syndrome. Accordingly, heightened stress-associated neural activity may represent a therapeutic target to reduce stress-related diseases, including TTS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.