We demonstrate depth profiling of polymer materials by using large argon (Ar) cluster ion beams. In general, depth profiling with secondary ion mass spectrometry (SIMS) presents serious problems in organic materials, because the primary keV atomic ion beams often damage them and the molecular ion yields decrease with increasing incident ion fluence. Recently, we have found reduced damage of organic materials during sputtering with large gas cluster ions, and reported on the unique secondary ion emission of organic materials. Secondary ions from the polymer films were measured with a linear type time-of-flight (TOF) technique; the films were also etched with large Ar cluster ion beams. The mean cluster size of the primary ion beams was Ar(700) and incident energy was 5.5 keV. Although the primary ion fluence exceeded the static SIMS limit, the molecular ion intensities from the polymer films remained constant, indicating that irradiation with large Ar cluster ion beams rarely leads to damage accumulation on the surface of the films, and this characteristic is excellently suitable for SIMS depth profiling of organic materials.
In this study, we present molecular depth profiling of multilayer structures composed of organic semiconductor materials such as tris(8-hydroxyquinoline)aluminum (Alq3) and 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPD). Molecular ions produced from Alq3 and NPD were measured by linear-type time-of-flight (TOF) mass spectrometry under 5.5 keV Ar70) ion bombardment. The organic multilayer films were analyzed and etched with large Ar cluster ion beams, and the interfaces between the organic layers were clearly distinguished. The effect of temperature on the diffusion of these materials was also investigated by the depth profiling analysis with Ar cluster ion beams. The thermal diffusion behavior was found to depend on the specific materials, and the diffusion of Alq3 molecules was observed to start at a lower temperature than that of NPD molecules. These results prove the great potential of large gas cluster ion beams for molecular depth profiling of organic multilayer samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.