The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. ?? 2013 Elsevier B.V. All rights reserved
We present the first Herschel PACS and SPIRE photometric observations in a portion of the outer Galaxy (216. • 5 225.• 5 and −2 • b 0 • ) as a part of the Hi-GAL survey. The maps between 70 and 500 μm, the derived column density and temperature maps, and the compact source catalog are presented. NANTEN CO(1-0) line observations are used to derive cloud kinematics and distances so that we can estimate distance-dependent physical parameters of the compact sources (cores and clumps) having a reliable spectral energy distribution that we separate into 255 proto-stellar and 688 starless sources. Both typologies are found in association with all the distance components observed in the field, up to ∼5.8 kpc, testifying to the presence of star formation beyond the Perseus arm at these longitudes. Selecting the starless gravitationally bound sources, we identify 590 pre-stellar candidates. Several sources of both proto-and pre-stellar nature are found to exceed the minimum requirement for being compatible with massive star formation based on the mass-radius relation. For the pre-stellar sources belonging to the Local arm (d 1.5 kpc) we study the mass function whose high-mass end shows a power law N (log M) ∝ M −1.0±0.2 . Finally, we use a luminosity versus mass diagram to infer the evolutionary status of the sources, finding that most of the proto-stellar sources are in the early accretion phase (with some cases compatible with a Class I stage), while for pre-stellar sources, in general, accretion has not yet started.
RX J1713.7−3946 is the most remarkable TeV γ-ray SNR which emits γ-rays in the highest energy range. We made a new combined analysis of CO and H I in the SNR and derived the total protons in the interstellar medium (ISM). We have found that the inclusion of the H I gas provides a significantly better spatial match between the TeV γ-rays and ISM protons than the H 2 gas alone. In particular, the southeastern rim of the γ-ray shell has a counterpart only in the H I. The finding shows that the ISM proton distribution is consistent with the hadronic scenario that comic ray (CR) protons react with ISM protons to produce the γ-rays. This provides another step forward for the hadronic origin of the γ-rays by offering one of the necessary conditions missing in the previous hadronic interpretations. We argue that the highly inhomogeneous distribution of the ISM protons is crucial in the origin of the γ-rays. Most of the neutral gas was likely swept up by the stellar wind of an OB star prior to the SNe to form a low-density cavity and a swept-up dense wall. The cavity explains the low-density site where the diffusive shock acceleration of charged particles takes place with suppressed thermal X-rays, whereas the CR protons can reach the target protons in the wall to produce the γ-rays. The present finding allows us to estimate the total CR proton energy to be ∼10 48 ergs, 0.1 % of the total energy of a SNe.
Hi-GAL is a large-scale survey of the Galactic plane, performed with Herschel in five infrared continuum bands between 70 and 500 µm. We present a band-merged catalogue of spatially matched sources and their properties derived from fits to the spectral energy distributions (SEDs) and heliocentric distances, based on the photometric catalogs presented in Molinari et al. (2016a), covering the portion of Galactic plane −71.0 • < < 67.0 • . The band-merged catalogue contains 100922 sources with a regular SED, 24584 of which show a 70 µm counterpart and are thus considered proto-stellar, while the remainder are considered starless. Thanks to this huge number of sources, we are able to carry out a preliminary analysis of early stages of star formation, identifying the conditions that characterise different evolutionary phases on a statistically significant basis. We calculate surface densities to investigate the gravitational stability of clumps and their potential to form massive stars. We also explore evolutionary status metrics such as the dust temperature, luminosity and bolometric temperature, finding that these are higher in proto-stellar sources compared to prestellar ones. The surface density of sources follows an increasing trend as they evolve from pre-stellar to proto-stellar, but then it is found to decrease again in the majority of the most evolved clumps. Finally, we study the physical parameters of sources with respect to Galactic longitude and the association with spiral arms, finding only minor or no differences between the average evolutionary status of sources in the fourth and first Galactic quadrants, or between "on-arm" and "inter-arm" positions.
Dark gas in the interstellar medium (ISM) is believed to not be detectable either in CO or H i radio emission, but it is detectable by other means including γ rays, dust emission, and extinction traced outside the Galactic plane at |b| > 5• . In these analyses, the 21 cm H i emission is usually assumed to be completely optically thin. We have reanalyzed the H i emission from the whole sky at |b| > 15• by considering temperature stratification in the ISM inferred from the Planck/IRAS analysis of the dust properties. The results indicate that the H i emission is saturated with an optical depth ranging from 0.5 to 3 for 85% of the local H i gas. This optically thick H i is characterized by spin temperature in the range 10 K-60 K, significantly lower than previously postulated in the literature, whereas such low temperature is consistent with emission/absorption measurements of the cool H i toward radio continuum sources. The distribution and the column density of the H i are consistent with those of the dark gas suggested by γ rays, and it is possible that the dark gas in the Galaxy is dominated by optically thick cold H i gas. This result implies that the average density of H i is 2-2.5 times higher than that derived on the optically thin assumption in the local ISM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.