By using a direct, intratracheal inoculation of an adenovirus encoding heme oxygenase 1 (Ad.HO-1), model gene therapy for acute lung injury induced by inhaled pathogen was performed. Data demonstrated that Ad.HO-1 administration is as effective as the pharmacologic upregulation of the endogenous HO-1 gene expression by hemin to attenuate neutrophilic inflammations of the lung after aerosolized lipopolysaccharide (LPS) exposure. Interestingly, immunohistochemical analysis revealed that the HO-1 gene was transferred not only to the airway epithelium, but to the alveolar macrophages (AMs). Moreover, overexpression of exogenous HO-1 in the macrophages provided a high level of endogenous interleukin 10 (IL-10) production from the macrophages, and additional experiments using IL-10 knockout mice demonstrated that the increase in IL-10 in the macrophages was critical for the resolution of neutrophilic migration in the lung after LPS exposure. These results suggest that AMs not only are barriers for efficient gene transfer to the respiratory epithelium, but also represent logical targets for Ad-mediated, direct, in vivo gene therapy strategies for inflammatory disorders in humans.
Peripheral platelets were activated more in patients with stable AERD compared with those in patients with stable ATA, patients with idiopathic chronic eosinophilic pneumonia, and control subjects. Platelet activation was involved in cysteinyl leukotriene overproduction and persistent airflow limitations in patients with AERD.
Rationale: Aspirin-exacerbated respiratory disease is characterized by severe asthma, nonsteroidal antiinflammatory drug hypersensitivity, nasal polyposis, and leukotriene overproduction. Systemic corticosteroid therapy does not completely suppress lifelong aspirin hypersensitivity. Omalizumab efficacy against aspirin-exacerbated respiratory disease has not been investigated in a randomized manner. Objectives: To evaluate omalizumab efficacy against aspirin hypersensitivity, leukotriene E 4 overproduction, and symptoms during an oral aspirin challenge in patients with aspirin-exacerbated respiratory disease using a randomized design. Methods: We performed a double-blind, randomized, crossover, placebo-controlled, single-center study at Sagamihara National Hospital between August 2015 and December 2016. Atopic patients (20-79 yr old) with aspirin-exacerbated respiratory disease diagnosed by systemic aspirin challenge were randomized (1:1) to a 3-month treatment with omalizumab or placebo, followed by a .18-week washout period (crossover design). The primary endpoint was the difference in area under logarithm level of urinary leukotriene E 4 concentration versus time curve in the intent-to-treat population during an oral aspirin challenge. Measurements and Main Results: Sixteen patients completed the study and were included in the analysis. The area under the logarithm level of urinary leukotriene E 4 concentration versus time curve during an oral aspirin challenge was significantly lower in the omalizumab phase (median [interquartile range], 51.1 [44.5-59.8]) than in the placebo phase (80.8 [interquartile range, 65.4-87.8]) (P , 0.001). Ten of 16 patients (62.5%) developed oral aspirin tolerance up to cumulative doses of 930 mg in the omalizumab phase (P , 0.001). Conclusions: Omalizumab treatment inhibited urinary leukotriene E 4 overproduction and upper/lower respiratory tract symptoms during an oral aspirin challenge, resulting in aspirin tolerance in 62.5% of the patients with aspirin-exacerbated respiratory disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.