In this study, we examined the biological action of IL-17 on human non-small cell lung cancer (NSCLC). Although IL-17 had no direct effect on the in vitro growth rate of NSCLC, IL-17 selectively augmented the secretion of an array of angiogenic CXC chemokines, including CXCL1, CXCL5, CXCL6, and CXCL8 but not angiostatic chemokines, by three different NSCLC lines. Endothelial cell chemotactic activity (as a measure of net angiogenic potential) was increased in response to conditioned medium from NSCLC stimulated with IL-17 compared with those from unstimulated NSCLC. Enhanced chemotactic activity was suppressed by neutralizing mAb(s) to CXCL1, CXCL5, and CXCL8 or to CXCR-2 but not to vascular endothelial growth factor-A. Transfection with IL-17 into NSCLC had no effect on the in vitro growth, whereas IL-17 transfectants grew more rapidly compared with controls when transplanted in SCID mice. This IL-17-elicited enhancement of NSCLC growth was associated with increased tumor vascularity. Moreover, treatment with anti-mouse CXCR-2-neutralizing Ab significantly attenuated the growth of both neomycin phosphotransferase gene-transfected and IL-17-transfected NSCLC tumors in SCID mice. A potential role for IL-17 in modulation of the human NSCLC phenotype was supported by the findings that, in primary NSCLC tissues, IL-17 expression was frequently detected in accumulating and infiltrating inflammatory cells and that high levels of IL-17 expression were associated with increased tumor vascularity. These results demonstrate that IL-17 increases the net angiogenic activity and in vivo growth of NSCLC via promoting CXCR-2-dependent angiogenesis and suggest that targeting CXCR-2 signaling may be a novel promising strategy to treat patients with NSCLC.
Digoxin, which is one of the most commonly prescribed drugs for the treatment of heart failure, is mainly eliminated from the circulation by the kidney. P-glycoprotein is well characterized as a digoxin pump at the apical membrane of the nephron. However, little is known about the transport mechanism at the basolateral membrane. We have isolated an organic anion transporter (OATP4C1) from human kidney. Human OATP4C1 is the first member of the organic anion transporting polypeptide (OATP) family expressed in human kidney. The isolated cDNA encodes a polypeptide of 724 aa with 12 transmembrane domains. The genomic organization consists of 13 exons located on chromosome 5q21. Its rat counterpart, Oatp4c1, is also isolated from rat kidney. Human OATP4C1 transports cardiac glycosides (digoxin, K m ؍ 7.8 M and ouabain, K m ؍ 0.38 M), thyroid hormone (triiodothyronine, Km ؍ 5.9 M and thyroxine), cAMP, and methotrexate in a sodiumindependent manner. Rat Oatp4c1 also transports digoxin (K m ؍ 8.0 M) and triiodothyronine (Km ؍ 1.9 M). Immunohistochemical analysis reveals that rat Oatp4c1 protein is localized at the basolateral membrane of the proximal tubule cell in the kidney. These data suggest that human OATP4C1͞rat Oatp4c1 might be a first step of the transport pathway of digoxin and various compounds into urine in the kidney.
Hypertension in patients with chronic kidney disease (CKD) strongly associates with cardiovascular events. Among patients with CKD, reducing the accumulation of uremic toxins may protect against the development of hypertension and progression of renal damage, but there are no established therapies to accomplish this. Here, overexpression of human kidney-specific organic anion transporter SLCO4C1 in rat kidney reduced hypertension, cardiomegaly, and inflammation in the setting of renal failure. In addition, SLCO4C1 overexpression decreased plasma levels of the uremic toxins guanidino succinate, asymmetric dimethylarginine, and the newly identified trans-aconitate. We found that xenobiotic responsive element core motifs regulate SLCO4C1 transcription, and various statins, which act as inducers of nuclear aryl hydrocarbon receptors, upregulate SLCO4C1 transcription. Pravastatin, which is cardioprotective, increased the clearance of asymmetric dimethylarginine and trans-aconitate in renal failure. These data suggest that drugs that upregulate SLCO4C1 may have therapeutic potential for patients with CKD.
Fatty acid-binding proteins (FABPs) are postulated to serve as lipid shuttles that solubilize hydrophobic fatty acids and deliver them to appropriate intracellular sites. Epidermal FABP (E-FABP/FABP5) is predominantly expressed in keratinocytes and is overexpressed in the actively proliferating tissue characteristic of psoriasis and wound healing. In this study, we found decreased expression of the differentiation-specific proteins keratin 1, involucrin, and loricrin in E-FABP(-/-) keratinocytes relative to E-FABP(+/+) keratinocytes. We also determined that incorporation of linoleic acid was significantly reduced in E-FABP(-/-) keratinocytes. Although linoleic acid did not directly affect keratinocyte differentiation, keratin 1 expression was induced by the linoleic acid derivative 13(S)-hydroxyoctadecadienoic acid (13(S)-HODE), and this induction was concomitant with increased NF-κB activity. In E-FABP(-/-) keratinocytes, the expression of 13(S)-HODE and the subsequent induction of NF-κB activity was lower than in wild-type keratinocytes. The reduction of linoleic acid in E-FABP(-/-) keratinocytes led to decreased cellular 13(S)-HODE content, resulting in decreased keratin 1 expression through downregulation of NF-κB activity. The regulation of fatty acid metabolism by E-FABP during keratinocyte differentiation suggests that E-FABP may have a role in the pathogenesis of psoriasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.