Molecular mechanisms regulating animal seasonal breeding in response to changing photoperiod are not well understood. Rapid induction of gene expression of thyroid-hormone-activating enzyme (type 2 deiodinase, DIO2) in the mediobasal hypothalamus (MBH) of the Japanese quail (Coturnix japonica) is the earliest event yet recorded in the photoperiodic signal transduction pathway. Here we show cascades of gene expression in the quail MBH associated with the initiation of photoinduced secretion of luteinizing hormone. We identified two waves of gene expression. The first was initiated about 14 h after dawn of the first long day and included increased thyrotrophin (TSH) beta-subunit expression in the pars tuberalis; the second occurred approximately 4 h later and included increased expression of DIO2. Intracerebroventricular (ICV) administration of TSH to short-day quail stimulated gonadal growth and expression of DIO2 which was shown to be mediated through a TSH receptor-cyclic AMP (cAMP) signalling pathway. Increased TSH in the pars tuberalis therefore seems to trigger long-day photoinduced seasonal breeding.
In order to construct a chicken (Gallus gallus) cytogenetic map, we isolated 134 genomic DNA clones as new cytogenetic markers from a chicken cosmid DNA library, and mapped these clones to chicken chromosomes by fluorescence in situ hybridization. Forty-five and 89 out of 134 clones were localized to macrochromosomes and microchromosomes, respectively. The 45 clones, which localized to chicken macrochromosomes (Chromosomes 1–8 and the Z chromosome) were used for comparative mapping of Japanese quail (Coturnix japonica). The chromosome locations of the DNA clones and their gene orders in Japanese quail were quite similar to those of chicken, while Japanese quail differed from chicken in chromosomes 1, 2, 4 and 8. We specified the breakpoints of pericentric inversions in chromosomes 1 and 2 by adding mapping data of 13 functional genes using chicken cDNA clones. The presence of a pericentric inversion was also confirmed in chromosome 8. We speculate that more than two rearrangements are contained in the centromeric region of chromosome 4. All 30 clones that mapped to chicken microchromosomes also localized to Japanese quail microchromosomes, suggesting that chromosome homology is highly conserved between chicken and Japanese quail and that few chromosome rearrangements occurred in the evolution of the two species.
A mutation that confers white plumage with black eyes was identified in the Minohiki breed of Japanese native chicken (Gallus gallus domesticus). The white plumage, with a few partially pigmented feathers, was not associated with the tyrosinase gene, and displayed an autosomal recessive mode of inheritance against the pigmented phenotype. All F1 offspring derived from crosses with mottled chickens (mo/mo), which show characteristic pigmented feathers with white tips, had plumage with a mottled-like pattern. This result indicates that the white plumage mutation is a novel allele at the mo locus; we propose the gene symbol mow for this mutant allele. Furthermore, the F1 hybrid between the mow/mow chicken and the panda (s/s) mutant of Japanese quail (Coturnix japonica), whose causative gene is the endothelin receptor B2 (EDNRB2) gene, showed a mow/mow chicken-like plumage, suggesting the possibility that the mutations in parental species are alleles of the same gene, EDNRB2. Nucleotide sequencing of the entire coding region of EDNRB2 revealed a non-synonymous G1008T substitution, which causes Cys244Phe amino acid substitution in exon 5 (which is part of the extracellular loop between the putative fourth and fifth transmembrane domains of EDNRB2) in the mutant chicken. This Cys244Phe mutation was also present in individuals of four Japanese breeds with white plumage. We also identified a non-synonymous substitution leading to Arg332His substitution that was responsible for the mottled (mo/mo) plumage phenotype. These results suggest that the EDN3 (endothelin 3)–EDNRB2 signaling is essential for normal pigmentation in birds, and that the mutations of EDNRB2 may cause defective binding of the protein with endothelins, which interferes with melanocyte differentiation, proliferation, and migration.
During early development in vertebrates, pluripotent cells are generated from the neural crest and migrate according to their presumptive fate. In birds and mammals, one of the progeny cells, melanoblasts, generally migrate through a dorsolateral route of the trunk region and differentiate to melanocytes. However, Silky is an exceptional chicken in which numerous melanoblasts travel via a ventral pathway and disperse into internal organs. Finally, these ectopic melanocytes induce heavy dermal and visceral melanization known as Fibromelanosis (Fm). To identify the genetic basis of this phenotype, we confirmed the mode of inheritance of Fm as autosomal dominant and then performed linkage analysis with microsatellite markers and sequence-tagged site markers. Using 85 backcross progeny from crossing Black Minorca chickens (BM-C) with F 1 individuals between White Silky (WS) and BM-C Fm was located on 10.2-11.7 Mb of chicken chromosome 20. In addition, we noticed a DNA marker that all Silky chickens and the F 1 individuals showed heterozygous genotyping patterns, suggesting gene duplication in the Fm region. By quantitative real-time PCR assay, Silky line-specific gene duplication was detected as an 130-kb interval. It contained five genes including endothelin 3 (EDN3), which encoded a potent mitogen for melanoblasts/melanocytes. EDN3 with another three of these duplicated genes in Silky chickens expressed almost twofold of those in BM-C. Present results strongly suggest that the increase of the expression levels resulting from the gene duplication in the Fm region is the trigger of hypermelanization in internal organs of Silky chickens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.