Background and Purpose-Obvious cardiac dysfunction, including ECG abnormalities and left ventricular asynergy, is known to develop after subarachnoid hemorrhage (SAH). To clarify the close relationship between myocardial damage and sympathetic nervous activity immediately after SAH, a novel experimental animal model was used. Methods-SAH was provoked by perforation of the basilar artery with the use of a microcatheter inserted through the femoral artery in 18 beagle dogs. Hemodynamic changes were recorded, and plasma concentrations of noradrenaline, adrenaline, and 3-methoxy-4-hydroxy-phenylethylene glycol (MHPG) and serum levels of creatine kinase-MB (CK-MB) and troponin T were measured at 0, 5, 15, 30, 60, 120, and 180 minutes after SAH. Results-Noradrenaline (pg/mL), adrenaline (pg/mL), and MHPG (ng/mL) increased abruptly from 120Ϯ70, 130Ϯ70, and 1.3Ϯ0.5 before SAH to 1700Ϯ1200, 5600Ϯ3500, and 3.2Ϯ1.2 at 5 minutes after SAH, respectively. Aortic pressure, left ventricular wall motion, and cardiac output increased by 60%, 40%, and 30%, respectively (PϽ0.001) at 5 minutes and then decreased by 50%, 55%, and 40%, respectively (PϽ0.001) Ͼ60 minutes after SAH compared with baseline values. The peak value of CK-MB correlated positively with the peak values of noradrenaline and adrenaline (rϭ0.730 and rϭ0.611, respectively). The peak value of troponin T also correlated positively with the peak values of noradrenaline and adrenaline (rϭ0.828 and rϭ0.792, respectively). Conclusions-These results suggest that the elevated activity of the sympathetic nervous system observed in the acute phase of SAH induced myocardial damage and contributed to the development of cardiac dysfunction.
In recent years, direct oral anticoagulants (DOACs) of dabigatran, rivaroxaban, apixaban, edoxaban, which are all alternatives to warfarin, have been released. The use of DOACs is becoming more widespread in the clinical management of thrombotic stroke risk in patients with atrial fibrillation (AF). In large-scale clinical trials of each drug, DOACs were reported to inhibit intracranial hemorrhage, stroke, and death compared to warfarin. Warfarin is an endogenous vitamin K antagonist; therefore, patients who are taking warfarin must be prohibited from taking vitamin K. Vitamin K is an essential cofactor required for the ɤ-carboxylation of vitamin K-dependent proteins including coagulation factors, osteocalcin (OC), matrix Gla protein (MGP), and the growth arrest-specific 6 (GAS6). OC is a key factor for bone matrix formation. MGP is a local inhibitor of soft tissue calcification in the vessel wall. GAS6 prevents the apoptosis of vascular smooth muscle cells. Therefore, decrease of blood vitamin K levels may cause osteoporosis, vascular calcification, and the inhibition of vessels angiogenesis. This study aimed to evaluate the effects of changing from warfarin to rivaroxaban on bone mineral metabolism, vascular calcification, and vascular endothelial dysfunction. We studied 21 consecutive patients with persistent or chronic AF, who were treated with warfarin at least for 12 months. Warfarin administration was changed to rivaroxaban (10 or 15 mg/day) in all patients. Osteopontin (OPN), bone alkaline phosphatase (BAP), and under-carboxylated osteocalcin (ucOC) were measured. Pulse wave velocity (PWV) and augmentation index (AI) were also measured as atherosclerosis assessments. All measurements were done before and six months after the rivaroxaban treatment. There was a significant increase in serum level of BAP compared to baseline (12.5 ± 4.6 to 13.4 ± 4.1 U/L, P < 0.01). In contrast, there was a significant decrease in the serum level of ucOC (9.5 ± 5.0 to 2.7 ± 1.3 ng/ml, P < 0.01). Also, in the ucOC levels, there was a significant negative correlation between baseline values and baseline to 6-months changes in high ucOC group (r = -0.97, P < 0.01). The atherosclerosis- and osteoporosis-related biomarker, serum level of OPN were significantly decreased compared to baseline (268.3 ± 46.8 to 253.4 ± 47.1 ng/ml, P < 0.01). AI and PWV were significantly decreased after 6 months of treatment with rivaroxaban (33.9 ± 18.4 to 24.7 ± 18.4%, P = 0.04; 1638.8 ± 223.0 to 1613.0 ± 250.1 m/s, P = 0.03, respectively). Switching to rivaroxaban from warfarin in patients with atrial fibrillation was associated with an increase of bone formation markers and a decrease of bone resorption markers, and also improvements of PWV and AI.
Incretin hormones have been reported to have cytoprotective actions in addition to their glucose-lowering effects. We evaluated whether teneligliptin, a novel dipeptidyl peptidase-4 (DPP-4) inhibitor, affects left ventricular (LV) function in patients with type 2 diabetes mellitus (T2DM). Twenty-nine T2DM patients not receiving any incretin-based drugs were enrolled and prescribed with teneligliptin for 3 months. Compared to baseline levels, hemoglobin A1c levels decreased (7.6 ± 1.0 % to 6.9 ± 0.7 %, p < 0.01) and 1,5-anhydro-D-glucitol levels increased (9.6 ± 7.2 μg/mL to 13.5 ± 8.7 μg/mL, p < 0.01) after treatment. Clinical parameters, including body mass index and blood pressure, did not show any difference before and after treatment. Three months after treatment, there were improvements in LV systolic and diastolic function [LV ejection fraction, 62.0 ± 6.5 % to 64.5 ± 5.0 %, p = 0.01; peak early diastolic velocity/basal septal diastolic velocity (E/e') ratio, 13.3 ± 4.1 to 11.9 ± 3.3, p = 0.01]. Moreover, there was an improvement in endothelial function (reactive hyperemia peripheral arterial tonometry [RH-PAT] index; 1.58 ± 0.47 to 2.01 ± 0.72, p < 0.01). There was a significant negative correlation between changes in the E/e' ratio and RH-PAT values. Furthermore, circulating adiponectin levels increased (27.0 ± 38.5 pg/mL to 42.7 ± 33.2 pg/mL, p < 0.01) without changes in patient body weight. Teneligliptin treatment was associated with improvements in LV function and endothelial functions, and an increase in serum adiponectin levels. These results support the cardio-protective effects of teneligliptin in T2DM patients and increase in serum adiponectin levels.
BackgroundStroke prevention by warfarin, a vitamin K antagonist, has been an integral part in the management of atrial fibrillation. Vitamin K-dependent matrix Gla protein (MGP) has been known as a potent inhibitor of arterial calcification and osteoporosis. Therefore, we hypothesized that warfarin therapy affects bone mineral metabolism, vascular calcification, and vascular endothelial dysfunction.MethodsWe studied 42 atrial fibrillation patients at high-risk for atherosclerosis having one or more coronary risk factors. Twenty-four patients had been treated with warfarin for at least 12 months (WF group), and 18 patients without warfarin (non-WF group). Bone alkaline phosphatase (BAP) and under carboxylated osteocalcin (ucOC) and receptor activator of nuclear factor-kappa B ligand (RANKL) were measured as bone metabolism markers. Reactive hyperemia-peripheral arterial tonometry (RH-PAT) index measured by Endo-PAT2000 was used as an indicator of vascular endothelial function.ResultsThere were no significant differences in patient background characteristics and other clinical indicators between the two groups. In WF group, the ucOC levels were significantly higher than those in the non-WF group (10.3 ± 0.8 vs. 3.4 ± 0.9 ng/mL; P < 0.01), similarly, the RANKL levels in the WF group were higher than those in the non-WF group (0.60 ± 0.06 vs. 0.37 ± 0.05 ng/mL; P = 0.007). Moreover, RH-PAT index was significantly lower in the WF group compared to those in the non-WF group (1.48 ± 0.11 vs. 1.88 ± 0.12; P = 0.017).ConclusionsLong-term warfarin therapy may be associated with bone mineral loss and vascular calcification in 60–80 year old hypertensive patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.