BackgroundPatient with acute coronary syndrome benefits from early revascularization. However, methods for the selection of patients who require urgent revascularization from a variety of patients visiting the emergency room with chest symptoms is not fully established. Electrocardiogram is an easy and rapid procedure, but may contain crucial information not recognized even by well-trained physicians.ObjectiveTo make a prediction model for the needs for urgent revascularization from 12-lead electrocardiogram recorded in the emergency room.MethodWe developed an artificial intelligence model enabling the detection of hidden information from a 12-lead electrocardiogram recorded in the emergency room. Electrocardiograms obtained from consecutive patients visiting the emergency room at Keio University Hospital from January 2012 to April 2018 with chest discomfort was collected. These data were splitted into validation and derivation dataset with no duplication in each dataset. The artificial intelligence model was constructed to select patients who require urgent revascularization within 48 hours. The model was trained with the derivation dataset and tested using the validation dataset.ResultsOf the consecutive 39,619 patients visiting the emergency room with chest discomfort, 362 underwent urgent revascularization. Of them, 249 were included in the derivation dataset and the remaining 113 were included in validation dataset. For the control, 300 were randomly selected as derivation dataset and another 130 patients were randomly selected for validation dataset from the 39,317 who did not undergo urgent revascularization. On validation, our artificial intelligence model had predictive value of the c-statistics 0.88 (95% CI 0.84–0.93) for detecting patients who required urgent revascularization.ConclusionsOur artificial intelligence model provides information to select patients who need urgent revascularization from only 12-leads electrocardiogram in those visiting the emergency room with chest discomfort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.