Regulated increase in the formation of microtubule arrays is thought to be important for axonal growth. Collapsin response mediator protein-2 (CRMP-2) is a mammalian homologue of UNC-33, mutations in which result in abnormal axon termination. We recently demonstrated that CRMP-2 is critical for axonal differentiation. Here, we identify two activities of CRMP-2: tubulin-heterodimer binding and the promotion of microtubule assembly. CRMP-2 bound tubulin dimers with higher affinity than it bound microtubules. Association of CRMP-2 with microtubules was enhanced by tubulin polymerization in the presence of CRMP-2. The binding property of CRMP-2 with tubulin was apparently distinct from that of Tau, which preferentially bound microtubules. In neurons, overexpression of CRMP-2 promoted axonal growth and branching. A mutant of CRMP-2, lacking the region responsible for microtubule assembly, inhibited axonal growth and branching in a dominant-negative manner. Taken together, our results suggest that CRMP-2 regulates axonal growth and branching as a partner of the tubulin heterodimer, in a different fashion from traditional MAPs.
Septins are a family of conserved proteins implicated in a variety of cellular functions such as cytokinesis and vesicle trafficking, but their properties and modes of action are largely unknown. Here we now report findings of immunocytochemical and biochemical characterization of a mammalian septin, MSF-A. Using an antibody specific for MSF subfamily proteins, MSF-A was found to be expressed predominantly in mammary human mammary epithelial cells (HMEC). MSF-A was associated with microtubules in interphase HMEC cells as it localized with the mitotic spindle and the bundle of microtubule at midzone during mitosis. Biochemical analysis revealed direct binding of MSF-A with polymerized tubulin through its central region containing guanine nucleotide-interactive motifs. GTPase activity, however, was not required for the association. Conditions that disrupt the microtubule network also disrupted the MSF-A-containing filament structure, resulting in a punctate cytoplasmic pattern. Depletion of MSF-A using small interfering RNAs caused incomplete cell division and resulted in the accumulation of binucleated cells. Unlike Nedd5, an MSF mutant deficient in GTPase activity forms filament indistinguishable from that of the wild type in COS cells. These results strongly suggest that septin filaments may interact not only with actin filaments but also with microtubule networks and that GTPase activity of MSF-A is not indispensable to incorporation of MSF-A into septin filaments.Septins, a family of heteropolymeric filament-forming proteins, were originally discovered in yeast to be essential for budding, and have since been identified in most eukaryotic organisms, with the exception of plants (for review, see Refs.
SummaryKeratin filaments form cytoskeletal networks in epithelial cells. Dynamic rearrangement of keratin filament networks is required for epithelial cells to perform cellular processes such as cell migration and polarization; however, the mechanism governing keratin filament rearrangement remains unclear. Here, we describe a novel mechanism of keratin cytoskeleton organization mediated by casein kinase Ia (CK-1a) and a newly identified keratin-associated protein, FAM83H. Knockdown of FAM83H induces keratin filament bundling, whereas overexpression of FAM83H disassembles keratin filaments, suggesting that FAM83H regulates the filamentous state of keratins. Intriguingly, keratin filament bundling is concomitant with the dissociation of CK-1a from keratin filaments, whereas aberrant speckle-like localization of CK-1a is observed concomitantly with keratin filament disassembly. Furthermore, CK-1a inhibition, similar to FAM83H knockdown, causes keratin filament bundling and reverses keratin filament disassembly induced by FAM83H overexpression, suggesting that CK-1a mediates FAM83H-dependent reorganization of keratin filaments. Because the N-terminal region of FAM83H interacts with CK-1a and the C-terminal region interacts with keratins, FAM83H might tether CK-1a to keratins. Colorectal cancer tissue also shows keratin filament disassembly accompanied with FAM83H overexpression and aberrant CK-1a localization, and FAM83H-overexpressing cancer cells exhibit loss or alteration of epithelial cell polarity. Importantly, knockdown of FAM83H inhibits cell migration accompanied by keratin cytoskeleton rearrangement in colorectal cancer cells. These results suggest that keratin cytoskeleton organization is regulated by FAM83H-mediated recruitment of CK-1a to keratins, and that keratin filament disassembly caused by overexpression of FAM83H and aberrant localization of CK-1a could contribute to the progression of colorectal cancer.
SummaryThe keratin cytoskeleton performs several functions in epithelial cells and provides regulated interaction sites for scaffold proteins, including trichoplein. Previously, we found that trichoplein was localized on keratin intermediate filaments and desmosomes in welldifferentiated, non-dividing epithelia. Here, we report that trichoplein is widely expressed and has a major function in the correct localization of the centrosomal protein ninein in epithelial and non-epithelial cells. Immunocytochemical analysis also revealed that this protein is concentrated at the subdistal to medial zone of both mother and daughter centrioles. Trichoplein binds the centrosomal proteins Odf2 and ninein, which are localized at the distal to subdistal ends of the mother centriole. Trichoplein depletion abolished the recruitment of ninein, but not Odf2, specifically at the subdistal end. However, Odf2 depletion inhibited the recruitment of trichoplein to a mother centriole, whereas ninein depletion did not. In addition, the depletion of each molecule impaired MT anchoring at the centrosome. These results suggest that trichoplein has a crucial role in MT-anchoring activity at the centrosome in proliferating cells, probably through its complex formation with Odf2 and ninein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.