ABSTRACT:The purpose of the present study was to determine the absolute protein expression levels of multiple drug-metabolizing enzymes and transporters in 17 human liver biopsies, and to compare them with the mRNA expression levels and functional activities to evaluate the suitability of the three measures as parameters of hepatic metabolism. Absolute protein expression levels of 13 cytochrome P450 (P450) enzymes, NADPH-P450 reductase (P450R) and 6 UDPglucuronosyltransferase (UGT) enzymes in microsomal fraction, and 22 transporters in plasma membrane fraction were determined using liquid chromatography/tandem mass spectrometry. CYP2C9, CYP2E1, CYP3A4, CYP2A6, UGT1A6, UGT2B7, UGT2B15, and P450R were abundantly expressed (more than 50 pmol/mg protein) in human liver microsomes. The protein expression levels of CYP3A4, CYP2B6, and CYP2C8 were each highly correlated with the corresponding enzyme activity and mRNA expression levels, whereas for other P450s, the protein expression levels were better correlated with the enzyme activities than the mRNA expression levels were. Among transporters, the protein expression level of organic anion-transporting polypeptide 1B1 was relatively highly correlated with the mRNA expression level. However, other transporters showed almost no correlation. These findings indicate that protein expression levels determined by the present simultaneous quantification method are a useful parameter to assess differences of hepatic function between individuals.
Recent studies have demonstrated the importance of insulin or insulin-like growth factor 1 (IGF-1) for regulation of pancreatic -cell mass. Given the role of tuberous sclerosis complex 2 (TSC2) as an upstream molecule of mTOR (mammalian target of rapamycin), we examined the effect of TSC2 deficiency on -cell function. Here, we show that mice deficient in TSC2, specifically in pancreatic  cells (TSC2 ؊/؊ mice), manifest increased IGF-1-dependent phosphorylation of p70 S6 kinase and 4E-BP1 in islets as well as an initial increased islet mass attributable in large part to increases in the sizes of individual  cells. These mice also exhibit hypoglycemia and hyperinsulinemia at young ages (4 to 28 weeks). After 40 weeks of age, however, the TSC2 ؊/؊ mice develop progressive hyperglycemia and hypoinsulinemia accompanied by a reduction in islet mass due predominantly to a decrease in the number of  cells. These results thus indicate that TSC2 regulates pancreatic -cell mass in a biphasic manner.
Pancreatic β cell failure is thought to underlie the progression from glucose intolerance to overt diabetes, and ER stress is implicated in such β cell dysfunction. We have now shown that the transcription factor CCAAT/ enhancer-binding protein β (C/EBPβ) accumulated in the islets of diabetic animal models as a result of ER stress before the onset of hyperglycemia. Transgenic overexpression of C/EBPβ specifically in β cells of mice reduced β cell mass and lowered plasma insulin levels, resulting in the development of diabetes. Conversely, genetic ablation of C/EBPβ in the β cells of mouse models of diabetes, including Akita mice, which harbor a heterozygous mutation in Ins2 (Ins2 WT/C96Y ), and leptin receptor-deficient (Lepr -/-) mice, resulted in an increase in β cell mass and ameliorated hyperglycemia. The accumulation of C/EBPβ in pancreatic β cells reduced the abundance of the molecular chaperone glucose-regulated protein of 78 kDa (GRP78) as a result of suppression of the transactivation activity of the transcription factor ATF6α, thereby increasing the vulnerability of these cells to excess ER stress. Our results thus indicate that the accumulation of C/EBPβ in pancreatic β cells contributes to β cell failure in mice by enhancing susceptibility to ER stress.
ABSTRACT:The levels of metabolizing enzymes and transporters expressed in hepatocytes are decisive factors for hepatobiliary disposition of most drugs. Induction via nuclear receptor activation can significantly alter those levels, with the coregulation of multiple enzymes and transporters occurring to different extents. Here, we report the use of a targeted liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) method for concurrent quantification of multiple cytochrome P450 (P450), UDP-glucuronosyltransferase (UGT), and transporter proteins in cultured primary human hepatocytes. The effects of culture format (i.e., sandwich culture versus conventional culture) and of dexamethasone (DEX) media concentrations on mRNA, protein, and activity levels were determined for three donors, and protein expression was compared with that in liver. In general, P450 and UGT expression was lower in hepatocyte cultures than that in liver, and CYP2C9 was found to be the most abundant P450 isoform expressed in cultured hepatocytes. The sandwich culture format and 0.1 M DEX in media retained the protein expression in the hepatocytes closest to the levels found in liver. However, higher in vitro expression was observed for drug transporters, especially for multidrug resistance protein 1 and breast cancer resistance protein. Direct protein quantification was applied successfully to study in vitro induction in sandwich cultured primary hepatocytes in a 24-well format using the prototypical inducers rifampicin, omeprazole, and phenobarbital. We conclude that targeted absolute LC-MS/MS quantification of drugmetabolizing enzymes and transporters can broaden the scope and significantly increase the impact of in vitro drug metabolism studies, such as induction, as an important supplement or future alternative to mRNA and activity data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.