Syndecan-4 is a transmembrane heparan sulfate proteoglycan expressed in a variety of cells, and its heparan sulfate glycosaminoglycan side chains bind to several proteins exhibiting various biological roles. The authors have previously demonstrated syndecan-4′s critical roles in pulmonary inflammation. In the current study, however, its role in pulmonary fibrosis was evaluated. Wild-type and syndecan-4-deficient mice were injected with bleomycin, and several parameters of inflammation and fibrosis were analyzed. The mRNA expression of collagen and α-smooth muscle action (α-SMA) in lung tissues, as well as the histopathological lung fibrosis score and collagen content in lung tissues, were significantly higher in the syndecan-4-deficient mice. However, the total cell count and cell differentiation in bronchoalveolar lavage fluid were equivalent between the wild-type and syndecan-4-deficient mice. Although there was no difference in the TGF-β expression in lung tissues between the wild-type and syndecan-4-deficient mice, significantly more activation of Smad3 in lung tissues was observed in the syndecan-4-deficient mice compared to the wild-type mice. Furthermore, in the in vitro experiments using lung fibroblasts, the co-incubation of syndecan-4 significantly inhibited TGF-β-induced Smad3 activation, collagen and α-SMA upregulation. Moreover, syndecan-4 knock-down by siRNA increased TGF-β-induced Smad3 activation and upregulated collagen and α-SMA expression. These findings showed that syndecan-4 inhibits the development of pulmonary fibrosis, at least in part, through attenuating TGF-β signaling.
Background: Decorin is a small leucine-rich repeat proteoglycan that plays a critical role in collagen fibrillogenesis, and regulates inflammation, wound healing and angiogenesis. In idiopathic pulmonary fibrosis (IPF), decorin is expressed in fibrotic lesions; furthermore, intratracheal gene transfer of decorin has been demonstrated to inhibit bleomycin-induced pulmonary fibrosis. Although these results suggest the critical role of decorin in pulmonary fibrosis, the role of decorin in the acute exacerbation of idiopathic interstitial pneumonia (AE-IIP) has not been clarified in detail. Thus, the goal of this study was to determine the role of decorin in AE-IIP. Methods: We retrospectively analyzed AE-IIP patients who had been admitted to our hospital. First, serum decorin levels were compared among patients with AE-IIP, patients with stable idiopathic interstitial pneumonia (SD-IIP), and healthy subjects. Next, the relationship between serum decorin levels and clinical parameters was analyzed in AE-IIP patients. Finally, the association between serum decorin levels and prognosis was evaluated in AE-IIP patients. IIP was divided into IPF and non-IPF, according to the published guidelines. Results: The serum decorin levels of AE-IIP patients were significantly lower than those of both healthy subjects and SD-IIP patients. Serum decorin levels were not related with the clinical parameters and prognosis, when all IIP patients were analyzed. In IPF patients, serum decorin levels had a significant correlation with oxygenation, and IPF patients with low serum decorin levels had a significantly higher survival rate than those with high serum decorin levels. Conclusions: Serum decorin levels are a potential prognostic biomarker in AE-IPF.
It is unclear whether molnupiravir has a beneficial effect on vaccinated patients infected with the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We here evaluated the efficacy of molnupiravir in patients with mild-to-moderate coronavirus disease 2019 (COVID-19) during the Omicron variant surge in Fukushima Prefecture, Japan. We enrolled patients with mild-to-moderate COVID-19 who were admitted to hospitals between January and April, 2022. Clinical deterioration after admission was compared between molnupiravir users (n = 230) and non-users (n = 690) after 1:3 propensity score matching. Additionally, we performed forward stepwise multivariate logistic regression analysis to evaluate the association between clinical deterioration after admission and molnupiravir treatment in the 1:3 propensity score-matched subjects. The characteristics of participants in both groups were balanced as indicated by covariates with a standardized mean difference of < 0.1. Regarding comorbidities, there was no imbalance between the two groups, except for the presence of hypertension, dyslipidemia, diabetes mellitus, and cardiac disease. The clinical deterioration rate was significantly lower in the molnupiravir users compared to the non-users (3.90% vs 8.40%; P = 0.034). Multivariate logistic regression analysis demonstrated that receiving molnupiravir was a factor for preventing deterioration (odds ratio 0.448; 95% confidence interval 0.206–0.973; P = 0.042), independent of other covariates. This real-world study demonstrates that molnupiravir contributes to the prevention of deterioration in COVID-19 patients after hospitalization during the Omicron variant phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.