Differences in biogenic phosphorus (P) compounds between sediment and suspended particles in aquatic environments are important for understanding the mechanisms of internal P loading, but these differences are still unknown. We used solution-state (31)P-nuclear magnetic resonance spectroscopy ((31)P NMR) with NaOH-ethylenediaminetetraacetic extraction to detect the multiple P compounds in suspended particles and sediment in the eutrophic Lake Kasumigaura, including orthophosphate monoesters, orthophosphate diesters, pyrophosphate, and polyphosphate. We tested the hypothesis that there is a significant difference between these groups in suspended particles and sediment. Biogenic P other than orthophosphate was found in significantly higher proportions in suspended particles (74.3% of total P) than in sediment (25.6%). Orthophosphate monoesters were comparatively more abundant in suspended particles, as indicated by the ratio of orthophosphate diesters to monoesters (average, 0.31 for suspended particles; 1.05 for sediment). The compounds identified as orthophosphate monoesters by (31)P NMR spectroscopy originated mainly from phospholipids (α-glycerophosphate and β-glycerophosphate) and ribonucleic acid (RNA-P), whereas the orthophosphate diesters included mostly DNA (DNA-P). These results suggest that the dynamics of orthophosphate diesters, the production of DNA-P, or the degradation of phospholipids, play an important role in P cycling in Lake Kasumigaura.
Summary
The free‐living, cosmopolitan, freshwater betaproteobacterial bacterioplankton genus Polynucleobacter was detected in different years in 11 lakes of varying types and a river using the size‐exclusion assay method (SEAM). Of the 350 strains isolated, 228 (65.1%) were affiliated with the Polynucleobacter subclusters PnecC (30.0%) and PnecD (35.1%). Significant positive correlations between fluorescence in situ hybridization and SEAM data were observed in the relative abundance of PnecC and PnecD bacteria to Polynucleobacter communities (PnecC + PnecD). Isolates were mainly PnecC bacteria in the samples with a high specific UV absorbance at 254 nm (SUVA254), and a low total hydrolysable neutral carbohydrate and amino acid (THneutralCH + THAA) content of the dissolved organic matter (DOM) fraction, which is known to be correlated with a high humic content. In contrast, the PnecD bacteria were abundant in samples with high chlorophyll a and/or THneutralCH + THAA concentrations, indicative of primary productivity. With few exceptions, differences in the relative abundance of PnecC and PnecD in each sample, determined using a high‐sensitivity cultivation‐based approach, were due to DOM quality. These results suggest that the major DOM component in the field, which is allochthonously or autochthonously derived, is a key factor for ecological niche separation between PnecC and PnecD subclusters.
dIncubation experiments using filtered waters from Lake Kasumigaura were conducted to examine bacterial contribution to a dissolved organic carbon (DOC) pool. Bacterial abundance, bacterial production, concentrations of DOC, total dissolved amino acids (TDAA), and total dissolved neutral sugars (TDNS) were monitored during the experiments. Bacterial production during the first few days was very high (20 to 35 g C liter ؊1 day ؊1 ), accounting for 40 to 70% of primary production. The total bacterial production accounted for 34 to 55% of the DOC loss during the experiment, indicating high bacterial activities in Lake Kasumigaura. The DOC degradation was only 12 to 15%, whereas the degradation of TDAA and TDNS ranged from 30 to 50%, suggesting the preferential usage of TDAA and TDNS. The contribution of bacterially derived carbon to a DOC pool in Lake Kasumigaura was estimated using D-amino acids as bacterial biomarkers and accounted for 30 to 50% of the lake DOC. These values were much higher than those estimated for the open ocean (20 to 30%). The ratio of bacterially derived carbon to bulk carbon increased slightly with time, suggesting that the bacterially derived carbon is more resistant to microbial degradation than bulk carbon. This is the first study to estimate the bacterial contribution to a DOC pool in freshwater environments. These results indicate that bacteria play even more important roles in carbon cycles in freshwater environments than in open oceans and also suggests that recent increases in recalcitrant DOC in various lakes could be attributed to bacterially derived carbon. The potential differences in bacterial contributions to dissolved organic matter (DOM) between freshwater and marine environments are discussed.
We investigated spatial and temporal variations in bacterial community structures as well as the presence of three functional proteolytic enzyme genes in the sediments of a hypereutrophic freshwater lake in order to acquire an insight into dynamic links between bacterial community structures and proteolytic functions. Bacterial communities determined from 16S rRNA gene clone libraries markedly changed bimonthly, rather than vertically in the sediment cores. The phylum Firmicutes dominated in the 4–6 cm deep sediment layer sample after August in 2007, and this correlated with increases in interstitial ammonium concentrations (p < 0.01). The Firmicutes clones were mostly composed of the genus Bacillus. npr genes encoding neutral metalloprotease, an extracellular protease gene, were detected after the phylum Firmicutes became dominant. The deduced Npr protein sequences from the retrieved npr genes also showed that most of the Npr sequences used in this study were closely related to those of the genus Bacillus, with similarities ranging from 61% to 100%. Synchronous temporal occurrences of the 16S rRNA gene and Npr sequences, both from the genus Bacillus, were positively associated with increases in interstitial ammonium concentrations, which may imply that proteolysis by Npr from the genus Bacillus may contribute to the marked increases observed in ammonium concentrations in the sediments. Our results suggest that sedimentary bacteria may play an important role in the biogeochemical nitrogen cycle of freshwater lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.