For sorting peas: When a mixture of cycloparaphenylenes (CPPs) is treated with C60, [10]CPP selectively encapsulates C60 forming the shortest fullerene‐peapod, [10]CPP⊃C60 (see picture). Such complementary host–guest complexes could be useful for the size‐ and shape‐selective separation of higher fullerenes and carbon nanotubes.
We report UV photodissociation (UVPD) and IR-UV double-resonance spectra of dibenzo-18-crown-6 (DB18C6) complexes with alkali metal ions (Li(+), Na(+), K(+), Rb(+), and Cs(+)) in a cold, 22-pole ion trap. All the complexes show a number of vibronically resolved UV bands in the 36,000-38,000 cm(-1) region. The Li(+) and Na(+) complexes each exhibit two stable conformations in the cold ion trap (as verified by IR-UV double resonance), whereas the K(+), Rb(+), and Cs(+) complexes exist in a single conformation. We analyze the structure of the conformers with the aid of density functional theory (DFT) calculations. In the Li(+) and Na(+) complexes, DB18C6 distorts the ether ring to fit the cavity size to the small diameter of Li(+) and Na(+). In the complexes with K(+), Rb(+), and Cs(+), DB18C6 adopts a boat-type (C(2v)) open conformation. The K(+) ion is captured in the cavity of the open conformer thanks to the optimum matching between the cavity size and the ion diameter. The Rb(+) and Cs(+) ions sit on top of the ether ring because they are too large to enter the cavity of the open conformer. According to time-dependent DFT calculations, complexes that are highly distorted to hold metal ions open the ether ring upon S(1)-S(0) excitation, and this is confirmed by extensive low-frequency progressions in the UVPD spectra.
The size- and orientation-selective formation of the shortest-possible C70 peapod in solution and in the solid state by using the shortest structural unit of an "armchair" carbon nanotube (CNT), cycloparaphenylene (CPP), has been studied. [10]CPP and [11]CPP exothermically formed 1:1 complexes with C70 , thereby giving the resulting peapods. A van't Hoff plot analysis revealed that the formation of these complexes in 1,2-dichlorobenzene was mainly driven by entropy, whereas the theoretical calculations suggested that the formation of the complex in the gas phase was predominantly driven by enthalpy. C70 was found to exist in two distinct orientations inside the CPP cavity, namely "lying" and "standing", depending on the specific size of the CPP. The theoretical calculations and the X-ray crystallographic analysis revealed that the interactions between [10]CPP and the short axis of C70 in its lying orientation were isotropic and similar to those observed between [10]CPP and C60 . However, the interactions between [11]CPP and C70 in its standing orientation were anisotropic, thereby involving the radial deformation of [11]CPP into an ellipsoidal shape. This "induced fit" maximized the van der Waals interactions with the long axis of C70 . Theoretical calculations revealed that the deformation occurred readily with low energy loss, thus suggesting that CPPs are highly radially elastic molecules. These results also indicate that the same type of radial deformation should occur in CNT peapods that encapsulate anisotropic fullerenes.
Graphene quantum dots (GQDs) have received considerable attention for their potential applications in the development of novel optoelectronic materials. In the generation of optoelectronic devices, the development of GQDs that are regulated in terms of their size and dimensions and are unoxidized at the sp(2) surfaces is desired. GQDs functionalized with bulky Fréchet's dendritic wedges at the GQD periphery were synthesized. The single-layered, size-regulated structures of the dendronized GQDs were revealed by atomic force microscopy. The edge-functionalization of the GQDs led to white-light emission, which is an uncommon feature.
Electronic and vibrational spectra of benzo-15-crown-5 (B15C5) and benzo-18-crown-6 (B18C6) complexes with alkali metal ions, M(+)•B15C5 and M(+)•B18C6 (M = Li, Na, K, Rb, and Cs), are measured using UV photodissociation (UVPD) and IR-UV double resonance spectroscopy in a cold, 22-pole ion trap. We determine the structure of conformers with the aid of density functional theory calculations. In the Na(+)•B15C5 and K(+)•B18C6 complexes, the crown ethers open the most and hold the metal ions at the center of the ether ring, demonstrating an optimum matching in size between the cavity of the crown ethers and the metal ions. For smaller ions, the crown ethers deform the ether ring to decrease the distance and increase the interaction between the metal ions and oxygen atoms; the metal ions are completely surrounded by the ether ring. In the case of larger ions, the metal ions are too large to enter the crown cavity and are positioned on it, leaving one of its sides open for further solvation. Thermochemistry data calculated on the basis of the stable conformers of the complexes suggest that the ion selectivity of crown ethers is controlled primarily by the enthalpy change for the complex formation in solution, which depends strongly on the complex structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.