LiteBIRD is a next-generation satellite mission to measure the polarization of the cosmic microwave background (CMB) radiation. On large angular scales the B-mode polarization of the CMB carries the imprint of primordial gravitational waves, and its precise measurement would provide a powerful probe of the epoch of inflation. The goal of LiteBIRD is to achieve a measurement of the characterizing tensor to scalar ratio r to an uncertainty of δr = 0.001. In order to achieve this goal we will employ a kilopixel superconducting detector array on a cryogenically cooled sub-Kelvin focal plane with an optical system at a temperature of 4 K. We are currently considering two detector array options; transition edge sensor (TES) bolometers and microwave kinetic inductance detectors (MKID). In this paper we give an overview of LiteBIRD and describe a TES-based polarimeter designed to achieve the target sensitivity of 2 µK·arcmin over the frequency range 50 to 320 GHz.
Extragalactic background light (EBL) anisotropy traces variations in the total production of photons over cosmic history, and may contain faint, extended components missed in galaxy point source surveys. Infrared EBL fluctuations have been attributed to primordial galaxies and black holes at the epoch of reionization (EOR), or alternately, intra-halo light (IHL) from stars tidally stripped from their parent galaxies at low redshift. We report new EBL anisotropy measurements from a specialized sounding rocket experiment at 1.1 and 1.6 micrometers. The observed fluctuations exceed the amplitude from known galaxy populations, are inconsistent with EOR galaxies and black holes, and are largely explained by IHL emission. The measured fluctuations are associated with an EBL intensity that is comparable to the background from known galaxies measured through number counts, and therefore a substantial contribution to the energy contained in photons in the cosmos.At near-infrared wavelengths, where the large zodiacal light foreground complicates absolute photometry measurements, the extragalactic background light (EBL) may be best accessed by anisotropy measurements. On large angular scales, fluctuations are produced by the clustering of galaxies, which is driven by the underlying distribution of dark matter. EBL anisotropy measurements can probe emission from epoch of reionization (EOR) galaxies (1-3) and directcollapse black holes (4) that formed during the EOR before the universe was fully ionized by exploiting the distinctive Lyman cutoff feature in the rest-frame ultraviolet (UV), thus probing the UV luminosity density at high redshifts (5). However, large-scale fluctuations may also arise from the intrahalo light (IHL) created by stars stripped from their parent galaxies during tidal interactions (6) at redshift z < 3. A multi-wavelength fluctuation analysis can distinguish among these scenarios and constrain the EOR star formation rate.A search for such background components must carefully account for fluctuations produced 2 by known galaxy populations. Linear galaxy clustering is an important contribution to fluctuations on scales much larger than galaxies themselves. On fine scales, the variation in the number of galaxies produces predominantly Poissonian fluctuations, with an amplitude that depends on the luminosity distribution. Anisotropy measurements suppress foreground galaxy fluctuations by masking known galaxies from an external catalog.The first detections of infrared fluctuations in excess of the contribution from known galaxies with the Spitzer Space Telescope (7-9) were interpreted as arising from a population of faint first-light galaxies at z > 7. The Hubble Space Telescope was used at shorter wavelengths (10) to carry out a fluctuation study in a small deep field but did not report fluctuations in excess of known galaxy populations. Measurements with the AKARIsatellite (11) show excess fluctuations with a blue spectrum rapidly rising from 4.1μm to 2.4μm. Fluctuation measurements in a large survey fi...
Context. AKARI is the first Japanese astronomical satellite dedicated to infrared astronomy. One of the main purposes of AKARI is the all-sky survey performed with six infrared bands between 9 μm and 200 μm during the period from 2006 May 6 to 2007 August 28. In this paper, we present the mid-infrared part (9 μm and 18 μm bands) of the survey carried out with one of the on-board instruments, the infrared camera (IRC). Aims. We present unprecedented observational results of the 9 μm and 18 μm AKARI all-sky survey and detail the operation and data processing leading to the point source detection and measurements. Methods. The raw data are processed to produce small images for every scan, and the point sources candidates are derived above the 5σ noise level per single scan. The celestial coordinates and fluxes of the events are determined statistically and the reliability of their detections is secured through multiple detections of the same source within milli-seconds, hours, and months from each other. Results. The sky coverage is more than 90% for both bands. A total of 877 091 sources (851 189 for 9 μm, 195 893 for 18 μm) are confirmed and included in the current release of the point source catalog. The detection limit for point sources is 50 mJy and 90 mJy for the 9 μm and 18 μm bands, respectively. The position accuracy is estimated to be better than 2 . Uncertainties in the in-flight absolute flux calibration are estimated to be 3% for the 9 μm band and 4% for the 18 μm band. The coordinates and fluxes of detected sources in this survey are also compared with those of the IRAS survey and are found to be statistically consistent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.