The streaming potentials of liquid beams of aqueous NaCl, NaBr, and NaI solutions are measured using soft X-ray, He(I), and laser multiphoton ionization photoelectron spectroscopy. Gaseous molecules are ionized in the vicinity of liquid beams and the photoelectron energy shifts are measured as a function of the distance between the ionization point and the liquid beam. The streaming potentials change their polarity with concentration of electrolytes, from which the singular points of concentration eliminating the streaming potentials are determined. The streaming currents measured in air also vanish at these concentrations. The electron binding energies of liquid water and I(-), Br(-), and Cl(-) anions are revisited and determined more accurately than in previous studies.
Xeroderma pigmentosum (XP) is an autosomal recessive disorder characterized by a high frequency of skin cancer on sun-exposed areas, and neurological complications. XP has a defect in the early step(s) of nucleotide-excision repair (NER) and consists of eight different genetic complementation groups (groups A-G and a variant). We established XPA (group-A XP) gene-deficient mice by gene targeting of mouse embryonic stem (ES) cells. The XPA-deficient mice showed neither obvious physical abnormalities nor pathological alterations, but were defective in NER and highly susceptible to ultraviolet-B- or 9,10-dimethyl-1,2-benz[a]anthracene-induced skin carcinogenesis. These findings provide in vivo evidence that the XPA protein protects mice from carcinogenesis initiated by ultraviolet or chemical carcinogen. The XPA-deficient mice may provide a good in vivo model to study the high incidence of skin carcinogenesis in group A XP patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.