Microbial activity is a fundamental component of oceanic nutrient cycles. Photosynthetic microbes, collectively termed phytoplankton, are responsible for the vast majority of primary production in marine waters. The availability of nutrients in the upper ocean frequently limits the activity and abundance of these organisms. Experimental data have revealed two broad regimes of phytoplankton nutrient limitation in the modern upper ocean. Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow. In contrast, iron often limits productivity where subsurface nutrient supply is enhanced, including within the main oceanic upwelling regions of the Southern Ocean and the eastern equatorial Pacific. Phosphorus, vitamins and micronutrients other than iron may also (co-)limit marine phytoplankton. The spatial patterns and importance of co-limitation, however, remain unclear. Variability in the stoichiometries of nutrient supply and biological demand are key determinants of oceanic nutrient limitation. Deciphering the mechanisms that underpin this variability, and the consequences for marine microbes, will be a challenge. But such knowledge will be crucial for accurately predicting the consequences of ongoing anthropogenic perturbations to oceanic nutrient biogeochemistry
Iron is an essential nutrient and plays an important role in the control of phytoplankton growth (Martin et al., 1989). Atmospheric dust has been thought to be the most important source of iron, supporting annual biological production in the western subarctic Pacific (WSP) (Duce and Tindale, 1991; Moore et al., 2002). We argue here for another source of iron to the WSP. We found extremely high concentrations of dissolved and particulate iron in the Okhotsk Sea Intermediate Water (OSIW) and the North Pacific Intermediate Water (NPIW), and water ventilation processes in this region probably control the transport of iron through the intermediate water layer from the continental shelf of the Sea of Okhotsk to wide areas of the WSP. Additionally, our time series data in the Oyashio region of the WSP indicate that the pattern of seasonal changes in dissolved iron concentrations in the surface‐mixed layer was similar to that of macronutrients, and that deep vertical water mixing resulted in higher winter concentrations of iron in the surface water of this region. The estimated dissolved iron supply from the iron‐rich intermediate waters to the surface waters in the Oyashio region was comparable to or higher than the reported atmospheric dust iron input and thus a major source of iron to these regions. Our data suggest that the consideration of this source of iron is essential in our understanding of spring biological production and biogeochemical cycles in the western subarctic Pacific and the role of the marginal sea.
Past global climate changes had strong regional expression. To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia. The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century. At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them. There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between AD 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century. The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions. Recent warming reversed the long-term cooling; during the period AD 1971-2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years
We develop a summer temperature reconstruction for temperate East Asia based on a network of annual tree-ring chronologies covering the period 800-1989 C.E. The East Asia reconstruction is the regional average of 585 individual grid point summer temperature reconstructions produced using an ensemble version of point-by-point regression. Statistical calibration and validation tests indicate that the regional average possesses sufficient overall skill to allow it to be used to study the causes of temperature variability and change over the region. The reconstruction suggests a moderately warm early medieval epoch (ca. 850-1050 C.E.), followed by generally cooler 'Little Ice Age' conditions (ca. 1350-1880 C.E.) and 20th century warming up to the present time. Since 1990, average temperature has exceeded past warm epochs of comparable duration, but it is not statistically unprecedented. Superposed epoch analysis reveals a volcanic forcing signal in the East Asia summer temperature reconstruction, resulting in pulses of cooler summer conditions that may persist for several years. Substantial uncertainties remain, however, particularly at lower frequencies, thus requiring caution and scientific prudence in the interpretation of this record.
[1] We developed a 50-year tree ring δ 18 O chronology for each of three tree species (Juniperus indica, Larix griffithii, and Picea spinulosa) using a total of 12 trees (four trees per species) from the Bhutan Himalaya. Despite originating from different species sampled at two different altitudes, the δ 18 O chronologies are highly correlated with one another (r = 0.76-0.89). Response analyses reveal that tree ring δ 18 O values are controlled mainly by summer precipitation, irrespective of species. Based on these results, a robust 269-year δ 18 O chronology was established to reconstruct the amount of May-September precipitation based on data from four larch trees. Our tree ring δ 18 O data show significant correlations with those from other regions of the Himalaya and the Tibetan Plateau, indicating that common signals related to monsoon activity are recorded in the data. However, at centennial timescales, our data from Bhutan show normal conditions during the 20th century, whereas records from sites in western Nepal and the southern/eastern Tibetan Plateau show weakening trends in monsoon intensity during the last 100-200 years; the weakening trends may be the result of a reduction in the meridional sea surface temperature gradient in the Indian Ocean during this time. At continental scales, the tree ring records show that areas more from ocean basins are particularly sensitive to reduced monsoon circulation. Correlation analyses suggest that the El Niño-Southern Oscillation (ENSO) plays an important role in modulating summer precipitation. However, the teleconnected relationship disappears during the period 1951-1970, coinciding with a negative phase of the Pacific Decadal Oscillation (PDO), implying interdecadal modulation of the PDO on the influence of the ENSO on precipitation in Bhutan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.