No abstract
All the iron-based superconductors identified to date share a square lattice composed of Fe atoms as a common feature, despite having different crystal structures. In copper-based materials, the superconducting phase emerges not only in square lattice structures but also in ladder structures. Yet iron-based superconductors without a square lattice motif have not been found despite being actively sought out. Here, we report the discovery of pressure-induced superconductivity in the iron-based spin-ladder material BaFe 2 S 3 , a Mott insulator with striped-type magnetic ordering below ~120 K. On the application of pressure this compound exhibits a metal-insulator transition at about 11 GPa, followed by the appearance of superconductivity below T c = 14 K, right after the onset of the metallic phase. Our findings indicate that iron-based ladder compounds represent promising material platforms, in particular for studying the fundamentals of iron-based superconductivity.The discovery of iron-based superconductors had a significant impact on condensed matter physics and led to extensive study of the interplay between crystal structure, magnetism and superconductivity 1 . All the iron-based superconducting materials discovered to date share the same structural motif: a two-dimensional square lattice formed by edge-shared FeX 4 tetrahedra (X = Se, P and As). The Fe atoms are nominally divalent in most of the parent materials. These parent compounds undergo a magnetic transition at low temperatures, typically exhibiting striped-type ordering.Superconductivity appears when the magnetic order is fully suppressed by the application of pressure or by the addition of doping carriers through chemical Purpose of this studyThe application of pressure is often a useful means of changing the electronic structure of a compound so as to induce a metallic state without simultaneously introducing any degree of disorder 17 . In this study, we investigated in detail the magnetic properties of a sulphur-analogue of the Fe-based ladder materials, BaFe 2 S 3 (space group: orthorhombic, Cmcm) 18,19 , and undertook experimental trials in which this compound was subjected to high pressures to obtain the metallic state. The electronic properties of this material depend on the manner in which the samples are synthesized, and thus we present data for sample 1 describing magnetic properties, and data for a range of samples 1 to 6 describing high-pressure effects. The details of the sample preparation process are given in the Method section. Electronic properties under ambient pressureFigure 2a displays the temperature dependence of the electrical resistivity (ρ) of BaFe 2 S 3 along the leg direction under ambient pressure. The observed insulating behaviour, which occurs despite the expected metallic behaviour in an unfilled 3d manifold, is caused by the Coulomb repulsion between Fe 3d electrons, which becomes prominent in a quasi-one-dimensional ladder structure. Figure 2b shows the magnetic susceptibility (χ) at 5 T along the three orthorhombic...
Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe 2 As 2 , a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state, we observe low energy spin-wave excitations with a gap energy ⌬ = 9.8͑4͒ meV. The in-plane spin-wave velocity v ab and out-of-plane spin-wave velocity v c measured at 12 meV are 280͑150͒ and 57͑7͒ meV Å, respectively. At high energy, we observe anisotropic scattering centered at the antiferromagnetic wave vectors. This scattering indicates two-dimensional spin dynamics, which possibly exist inside the Stoner continuum. At T N = 136͑1͒ K, the gap closes and quasielastic scattering is observed above T N , indicative of short-range spin fluctuations. In the paramagnetic state, the scattering intensity along the L direction becomes "rodlike," characteristic of uncorrelated out-of-plane spins, attesting to the twodimensionality of the system.
Excitations from a strongly frustrated system, the kagomé ice state of the spin ice Dy 2 Ti 2 O 7 under magnetic fields along a [111] direction, have been studied. They are theoretically proposed to be regarded as magnetic monopoles. Neutron scattering measurements of spin correlations show that close to the critical point the monopoles are fluctuating between high-and low-density states, supporting that the magnetic Coulomb force acts between them. Specific heat measurements show that monopole-pair creation obeys an Arrhenius law, indicating that the density of monopoles can be controlled by temperature and magnetic field.
Determining ground states of correlated electron systems is fundamental to understanding novel phenomena in condensed matter physics. A difficulty, however, arises in a geometrically frustrated system in which the incompatibility between the global topology of an underlying lattice and local spin interactions gives rise to macroscopically degenerate ground states 1 , potentially prompting the emergence of quantum spin states, such as resonating valence bond (RVB) and valence bond solid (VBS). Although theoretically proposed to exist in a kagome lattice -one of the most highly frustrated lattices in two dimensions (2D) being comprised of corner-sharing triangles -such quantum-fluctuation-induced states have not been observed experimentally. Here we report the first realization of the "pinwheel" VBS ground state in the S = 1 2 deformed kagome lattice antiferromagnet Rb 2 Cu 3 SnF 12 . In this system, a lattice distortion breaks the translational symmetry of the ideal kagome lattice and stabilizes the VBS state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.