The effects of neutron and ion irradiations on deuterium (D) retention in tungsten (W) were investigated. Specimens of pure W were irradiated with neutrons to 0.3 dpa at around 323 K and then exposed to high-flux D plasma at 473 and 773 K. The concentration of D significantly increased by neutron irradiation and reached 0.8 at% at 473K and 0.4 at% at 773 K. Annealing tests for the specimens irradiated with 20 MeV W ions showed that the defects which play a dominant role in the trapping at high temperature were stable at least up to 973 K, while the density decreased at temperatures equal to or above 1123 K. These observations of the thermal stability of traps and the activation energy for D detrapping examined in a previous study (≈1.8 eV) indicated that the defects which contribute predominantly to trapping at 773 K were small voids. The higher concentration of trapped D at 473 K was explained by additional contributions of weaker traps. The release of trapped D was clearly enhanced by the exposure to atomic hydrogen at 473 K, though higher temperatures are more effective for using this effect for tritium removal in fusion reactors.2
Radiation tolerance is determined by how effectively the microstructure can remove point defects produced by irradiation. Engineered nanocrystalline SiC with a high-density of stacking faults (SFs) has significantly enhanced recombination of interstitials and vacancies, leading to self-healing of irradiation-induced defects. While single crystal SiC readily undergoes an irradiation-induced crystalline to amorphous transformation at room temperature, the nano-engineered SiC with a high-density of SFs exhibits more than an order of magnitude increase in radiation resistance. Molecular dynamics simulations of collision cascades show that the nano-layered SFs lead to enhanced mobility of interstitial Si atoms. The remarkable radiation resistance in the nano-engineered SiC is attributed to the high-density of SFs within nano-sized grain structures that significantly enhance point defect annihilation.
Retention of D in neutron-irradiated W and desorption were examined after plasma exposure at 773 K. Deuterium was accumulated at a relatively high concentration up to a large depth of 50-100 m due to the trapping effects of defects uniformly induced in the bulk. A
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.