Distribution and level of 16 individual and total polycyclic aromatic hydrocarbons (∑PAHs) were assessed in soils, roots and above-ground tissues of reed (Phragmites australis) on monitoring plots in the city of Kamensk-Shakhtinskyi (Southern Russia, Rostov Region). The total concentration of the 16 PAHs in soil samples ranged between 499.0 to 7177.9 µg kg -1 . Samples from the plot no. 4 had the highest PAHs concentrations of 7177.9 µg kg -1 . The mean concentration of ∑16PAHs in plot no. 3 was noticeably higher than those in other monitoring sites for both root (363.0 µg kg -1 ) and above-ground tissues (239.8 µg kg -1 ). The distribution of PAHs ring size was in the order of 5-6˃4˃3˃2 in soil samples and HMW PAHs fractions represent 57.3% of the total PAHs. The concentrations of 3-4 ring PAHs were higher than HMW PAHs with 5-6 aromatic rings in all P. australis tissues. Diagnostic ratios of PAHs indicated that anthropogenic activities were probably major sources of PAHs. Accordingly, the maximum accumulation was found for phenanthrene among the 16 priority PAHs in the most of the soil and plants samples. More PAHs were accumulated in roots, as reflected by its higher mean concentration of PAHs in each plot. In addition, the BCF and TF values of LMW PAHs with 2-and 3-rings were higher than those of HMW PAHs. Taken together, our results indicated that there were an intensive accumulation of PAHs in the zone of industrial sewage tanks and sludge reservoirs as well as an obvious translocations of PAHs from the polluted soils to plant tissues, therefore, more attention is required to be paid to the PAH contamination in this area.
An increase in the penetration of metal-based nanoparticles (NPs) into the environment requires an assessment of their ecotoxicity as they impair the critical activity of plants, animals, bacteria, and enzymes. Therefore, the study aimed to observe the effects of metal-based NPs, including copper (Cu), nickel (Ni), and zinc (Zn), on the Cambisols, which cover a significant part of the earth's soil and play an important role in the biosphere. Metal-based NPs were introduced into the soil at concentrations of 100, 1,000, and 10,000 mg/kg. The biological properties of the soil are being investigated as the most sensitive to external contamination. The highest ecotoxicity of the studied pollutants introduced into the soil at the same concentrations was shown by Cu (up to 34%) and Zn (up to 30%) NPs, while Ni NPs showed less (up to 22%). Microbiological (total number of bacteria, Azotobacter sp. abundance) and phytotoxic properties (radish seed germination and length of roots) of Cambisols were more sensitive (22–53%) to pollution by NPs of Cu, Zn, and Ni, while enzymatic activity (catalase and dehydrogenases) showed less sensitivity (14–32%). The present results could be useful for biomonitoring the state of contaminated soils, especially by NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.