Using a set of six 1H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5–30 kDa proteins. The approach relies on perdeuteration, amide 2H/1H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary 13C/15N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.
Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of 1 H-1 H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.NMR spectroscopy | magic-angle spinning | protein structures | proton detection | viral nucleocapsids D espite tremendous progress in the analysis of biomolecular samples over the last two decades (1-7), routine application of magic-angle spinning (MAS) NMR in biology is still limited by the inherently low sensitivity. The direct detection of proton resonances is a straightforward way to counter this problem, but entails a trade-off with resolution due to the strong homonuclear dipolar interactions among proton nuclei. High-resolution proton-detected methods were first demonstrated with modest spinning frequencies by today's standards (∼10 kHz) and relied on a reduction of 1 H-1 H couplings by high levels of dilution with deuterium, typically perdeuteration, and complete (8, 9) or partial (10-12) protonation at exchangeable sites. The need for narrow proton resonances without such extreme levels of deuteration has motivated a continuous technological development, resulting in a dramatic increase in the available spinning frequency (13)(14)(15)(16)(17)(18)(19)(20).At MAS frequencies of 40-60 kHz, deuteration and 100% reprotonation at exchangeable sites, primarily amide protons, result in resolved and sensitive spectra, similar in quality to the case of higher dilution levels and lower spinning frequencies (21-23). This opens the way to rapid sequential assignment of backbone resonances (24-27), as well as to the unambiguous measurement of detailed structural and dynamical parameters (28-32). A further increase in the MAS frequency to 100 kHz allows resonance assignment (20), a structure determination of a model protein (16), and interaction studies (15) with as little as 0.5 mg of sample. However, a high deuteration level severely limits observation of side-chain s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.