Increased body weight as well as type 2 diabetes (T2D) are found to be associated with increased incidence of hypertension, although the mechanisms facilitating hypertension in T2D or nondiabetic individuals are not clear. Therefore, in this study we compared the levels of insulin resistance (IR:OGIS), plasma insulin (PI:RIA) levels, and pro-inflammatory cytokines (IL-6 and TNF-α: ELISA), being risk factors previously found to be associated with hypertension, in T2D patients showing increased body weight (obese and overweight, BMI ≥ 25 kg/m2) with hypertension (group A, N = 30), or without hypertension (group B, N = 30), and in nonobese (BMI < 25 kg/m2), normotensive controls (group C, N = 15). We found that OGIS index was the lowest (A: 267 ± 35.42 vs. B: 342.89 ± 32.0, p < 0.01) and PI levels were the highest (A: 31.05 ± 8.24 vs. B: 17.23 ± 3.23, p < 0.01) in group A. In addition, IL-6 levels were higher in group A (A: 15.46 ± 5.15 vs. B: 11.77 ± 6.09; p < 0.05) while there was no difference in TNF-α levels. Our results have shown that appearance of hypertension in T2D patients with increased body weight was dependent on further increase in IR which was associated with the rise in pro-inflammatory IL-6 cytokine. The results imply that lifestyle intervention aimed to decrease IR might be beneficial in reducing the risk for hypertension in those T2D individuals.
This study aimed to analyse the impact of obesity in type 2 diabetes (T2D) on adipocytokines (adiponectin, leptin and resistin) and inflammatory markers (TNF-α, IL-6 and hsCRP) as cardiovascular risk factors. A cross-sectional study comparing the basal levels of adipocytokines and inflammatory markers was done in 18 obese (BMI ≥ 30 kg/m2) (group A), 21 overweight (25 kg/m2 ≤ BMI < 30 kg/m2) (group B), 25 non-obese T2D patients (group C) and 15 non-obese controls (group D). The lowest levels of adiponectin and the highest levels of leptin, resistin, TNF-α, IL-6 and hsCRP were found in group A. Adiponectin levels were significantly lower, and resistin, TNF-α, and hsCRP levels were elevated in group C vs. D. However, leptin and IL-6 levels differed significantly between groups A and B, but not between groups C and D. Moreover, we found a significant negative correlation between adiponectin and TNF-α, but not with other markers, which was independent of the presence of obesity. In contrast, leptin and resistin correlated with the inflammatory markers, and this correlation was obesity-dependent. Our results suggest that obesity influences cardiovascular risk primarily through changes in leptin and resistin and less efficiently at the level of adiponectin.
Dysglycemia, in this survey defined as impaired glucose tolerance (IGT) or type 2 diabetes, is common in patients with coronary artery disease (CAD) and associated with an unfavorable prognosis. This European survey investigated dysglycemia screening and risk factor management of patients with CAD in relation to standards of European guidelines for cardiovascular subjects. RESEARCH DESIGN AND METHODS The European Society of Cardiology's European Observational Research Programme (ESC EORP) European Action on Secondary and Primary Prevention by Intervention to Reduce Events (EUROASPIRE) V (2016-2017) included 8,261 CAD patients, aged 18-80 years, from 27 countries. If the glycemic state was unknown, patients underwent an oral glucose tolerance test (OGTT) and measurement of glycated hemoglobin A 1c. Lifestyle, risk factors, and pharmacological management were investigated. RESULTS A total of 2,452 patients (29.7%) had known diabetes. OGTT was performed in 4,440 patients with unknown glycemic state, of whom 41.1% were dysglycemic. Without the OGTT, 30% of patients with type 2 diabetes and 70% of those with IGT would not have been detected. The presence of dysglycemia almost doubled from that selfreported to the true proportion after screening. Only approximately one-third of all coronary patients had completely normal glucose metabolism. Of patients with known diabetes, 31% had been advised to attend a diabetes clinic, and only 24% attended. Only 58% of dysglycemic patients were prescribed all cardioprotective drugs, and use of sodium-glucose cotransporter 2 inhibitors (3%) or glucagon-like peptide 1 receptor agonists (1%) was small. CONCLUSIONS Urgent action is required for both screening and management of patients with CAD and dysglycemia, in the expectation of a substantial reduction in risk of further cardiovascular events and in complications of diabetes, as well as longer life expectancy.
Background: Patients with Huntington disease (HD) develop diabetes mellitus more often than do matched healthy controls. Recent studies in neurodegenerative diseases suggested that insulin resistance constitutes a metabolic stressor that interacts with a preexisting neurobiological template to induce a given disorder.Objective: To investigate possible changes in insulin sensitivity and secretion, major determinants of glucose homeostasis, in a group of consecutive normoglycemic patients with HD.Design: Metabolic investigations.Participants: Twenty-nine untreated, nondiabetic patients with HD and 22 control participants matched by age, sex, and socioeconomic background.Main Outcome Measures: Glucose tolerance, assessed by means of the glucose curve during oral glucose challenge; insulin sensitivity, assessed using homeostasis model assessment and minimal model analysis based on frequent sampling of plasma glucose and plasma insulin during the intravenous glucose tolerance test; and insulin secretion, determined by means of the acute insulin response and the insulinogenic index.Results: The evaluation of insulin sensitivity using homeostasis model assessment demonstrated higher homeostasis model assessment insulin resistance indices, and a lower sensitivity index when the minimal model approach was used, in patients with HD compared with controls (P=.03 and P=.003, respectively). In the assessment of early-phase insulin secretion, the acute insulin response and the insulinogenic index were lower in patients with HD compared with controls (P=.02). The number of CAG repeats correlated significantly only with acute insulin response (P =.003).Conclusions: Besides impairment in insulin secretion capacity, a simultaneous decrease in insulin sensitivity, with an increase in the insulin resistance level, was found in normoglycemic patients with HD compared with controls. These data imply that progression of the insulin secretion defect in HD may lead to a failure to compensate for insulin resistance.
Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of tissues to respond to insulin and leads to disturbed metabolic homeostasis. Mitochondria, as a central player in the cellular energy metabolism, are involved in the mechanisms of IR and T2D. Mitochondrial function is affected by insulin resistance in different tissues, among which skeletal muscle and liver have the highest impact on whole-body glucose homeostasis. This review focuses on human studies that assess mitochondrial function in liver, muscle and blood cells in the context of T2D. Furthermore, different interventions targeting mitochondria in IR and T2D are listed, with a selection of studies using respirometry as a measure of mitochondrial function, for better data comparison. Altogether, mitochondrial respiratory capacity appears to be a metabolic indicator since it decreases as the disease progresses but increases after lifestyle (exercise) and pharmacological interventions, together with the improvement in metabolic health. Finally, novel therapeutics developed to target mitochondria have potential for a more integrative therapeutic approach, treating both causative and secondary defects of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.