Combined analyses of deep tow magnetic anomalies and International Ocean Discovery Program Expedition 349 cores show that initial seafloor spreading started around 33 Ma in the northeastern South China Sea (SCS), but varied slightly by 1-2 Myr along the northern continent-ocean boundary (COB). A southward ridge jump of 20 km occurred around 23.6 Ma in the East Subbasin; this timing also slightly varied along the ridge and was coeval to the onset of seafloor spreading in the Southwest Subbasin, which propagated for about 400 km southwestward from 23.6 to 21.5 Ma. The terminal age of seafloor spreading is 15 Ma in the East Subbasin and 16 Ma in the Southwest Subbasin. The full spreading rate in the East Subbasin varied largely from 20 to 80 km/Myr, but mostly decreased with time except for the period between 26.0 Ma and the ridge jump (23.6 Ma), within which the rate was the fastest at 70 km/ Myr on average. The spreading rates are not correlated, in most cases, to magnetic anomaly amplitudes that reflect basement magnetization contrasts. Shipboard magnetic measurements reveal at least one magnetic reversal in the top 100 m of basaltic layers, in addition to large vertical intensity variations. These complexities are caused by late-stage lava flows that are magnetized in a different polarity from the primary basaltic layer emplaced during the main phase of crustal accretion. Deep tow magnetic modeling also reveals this smearing in basement magnetizations by incorporating a contamination coefficient of 0.5, which partly alleviates the problem of assuming a magnetic blocking model of constant thickness and
Coring/logging data and physical property measurements from International Ocean Discovery Program Expedition 349 are integrated with, and correlated to, reflection seismic data to map seismic sequence boundaries and facies of the central basin and neighboring regions of the South China Sea. First-order sequence boundaries are interpreted, which are Oligocene/Miocene, middle Miocene/late Miocene, Miocene/Pliocene, and Pliocene/Pleistocene boundaries. A characteristic early Pleistocene strong reflector is also identified, which marks the top of extensive carbonate-rich deposition in the southern East and Southwest Subbasins. The fossil spreading ridge and the boundary between the East and Southwest Subbasins acted as major sedimentary barriers, across which seismic facies changes sharply and cannot be easily correlated. The sharp seismic facies change along the Miocene-Pliocene boundary indicates that a dramatic regional tectonostratigraphic event occurred at about 5 Ma, coeval with the onsets of uplift of Taiwan and accelerated subsidence and transgression in the northern margin. The depocenter or the area of the highest sedimentation rate switched from the northern East Subbasin during the Miocene to the Southwest Subbasin and the area close to the fossil ridge in the southern East Subbasin in the Pleistocene. The most active faulting and vertical uplifting now occur in the southern East Subbasin, caused most likely by the active and fastest subduction/obduction in the southern segment of the Manila Trench and the collision between the northeast Palawan and the Luzon arc. Timing of magmatic intrusions and seamounts constrained by seismic stratigraphy in the central basin varies and does not show temporal pulsing in their activities.LI ET AL.
The early rift sedimentation history of the South China Sea is still not well understood due to restricted borehole coverage of the Paleogene strata and lack of reliable stratigraphic dating. We use detrital zircon U‐Pb geochronology to explore the source‐to‐sink characteristics of syn‐rift sequences in the northern South China Sea. The results reveal significant intrabasinal provenances in addition to the well‐perceived terrigenous supply from the north. The Dongsha Uplift is considered to account for the dominance of the Early Cretaceous zircons in the Eocene samples. The Lower Oligocene sediments in the Qiongdongnan Basin could have been sourced from Hainan Island and local uplifts, but their distinction cannot be confirmed by the U‐Pb age spectra. Contemporary sediments in the northern Pearl River Mouth Basin were most likely transported from southeastern South China with well‐rounded zircon grains showing U‐Pb age similarity to those from the northeastern tributaries of the Pearl River. By contrast, intrabasinal sources from the west and east are suggested to have contributed the infill of the southern part of the Pearl River Mouth Basin based on generally euhedral zircon shapes. These sedimentary source patterns appear to change very little in the Oligocene northern South China Sea. However, the newly detected Neoproterozoic zircons in the Upper Oligocene sediments from borehole L21 tend to indicate a southern source. The episodic and diachronic nature of rifting and erosion processes in the early South China Sea is the cause of complex patterns in the Paleogene provenance history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.