In this work, a new strategy for developing light-triggered Pickering emulsions as smart soft vehicles for on-demand release is proposed. Initially, UV-induced tailored wettability allows anchoring of TiO2 nanoparticles at the interface to prepare stable water in oil emulsions. Such emulsions show the efficacy of microencapsulation and controlled release by demulsification due to the hydrophilic conversion of the TiO2 nanoparticles using a noninvasive light irradiation trigger. A molecule of interest is selected as a model cargo to quantitatively evaluate the as-prepared Pickering emulsions for their encapsulation and release behaviors. Moreover, light-responsive emulsion destabilization mechanism is studied as a function of particle concentration, light wavelength, and light intensity, respectively, determined by drop diameter evolution and droplet coalescence kinetics plots. For consideration of application in life sciences, Pickering emulsions sensitive to visible light are also established based on nitrogen doping of TiO2 nanoparticle emulsifiers.
Emulsion droplets can serve as ideal compartments for reactions. In fact, in many cases, the chemical reactions are supposed to be triggered at a desired position and time without change of the system environment. Here, we present a type of light and magnetic dual-responsive Pickering emulsion microreactor by coadsorption of light-sensitive titania (TiO) and super paramagnetic iron oxide (FeO) nanoparticles at the oil-water interface of emulsion droplets. The droplets encapsulating different reactants in advance can be driven close to each other by an external magnetic field, and then the chemical reaction is triggered by UV illumination due to the contact of the isolated reactants as a result of droplet coalescence. An insight into the incorporation of hydrophobic TiO and hydrophilic FeO nanoparticles simultaneously at the emulsion interface is achieved. On the basis of that, an account is given of the coalescence mechanism of the Pickering emulsion microreactors. Our work not only provides a novel Pickering emulsion microreactor platform for triggering chemical reactions in a nonintrusive and well-controlled way but also opens a promising avenue to construct multifunctional Pickering emulsions by assembly of versatile building block nanoparticles at the interface of emulsion droplets.
A robust Pickering emulsion stabilized by lipase-immobilized alginate gel microparticles with a coating of silanized titania nanoparticles is developed for biphasic biocatalysis.
In this work, switchable Pickering emulsions that utilize UV/dark manipulation employ a type of smart TiO2 nanoparticle as emulsifiers. The emulsifiers can be awakened when needed via UV-induced degradation of grafted silanes on TiO2 nanoparticles. By tuning the surface wettability of TiO2 nanoparticles in situ via UV/dark actuation, emulsions stabilized by the nanoparticles can be reversibly switched between the water-in-oil (W/O) type and oil-in-water (O/W) type for several cycles. Due to the convertible wettability, the smart nanoparticle emulsifiers can be settled in either the oil phase or the water phase as desired during phase separation, making it convenient for recycling. The present work provides a facile and noninvasive method to freely manipulate the formation, breakage, and switching of the emulsion; this method has promising potential as a powerful technique for use in energy-efficient and environmentally friendly industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.