Lung cancer is the most common and aggressive tumor in the world. Long non-coding RNA small nucleolar RNA host gene 1 (lncRNA SNHG1) play critical roles in the progression of cancers. However, the function and underlying mechanism remain unclear in lung cancer. In the current study, we found that expression of SNHG1 was up-regulated in non-small cell lung cancer (NSCLC) tissues and cell lines. NSCLC patients with high SNHG1 expression were significantly correlated with larger tumor size, advanced TNM stage, lymph node metastasis and poor overall survival than patients with low SNHG1 expression. Furthermore, function assays showed that SNHG1 inhibition suppressed NSCLC cell proliferation both in vitro and in vivo. We also found that miR-101-3p could act as a target of SNHG1 in NSCLC and the inhibition of NSCLC progression induced by SNHG1 knockdown required the activity of miR-101-3p. In addition, we identified that SOX9 acted as a target of miR-101-3p, and SOX9 played the oncogenic role in NSCLC by activating Wnt/β-catenin signaling pathway. Taken together, our study suggested that lncRNA SNHG1 could promote NSCLC progression via miR-101-3p and SOX9. The SNHG1/miR-101-3p/SOX9/Wnt/β-catenin axis regulatory network might provide a potential new therapeutic strategy for lung cancer treatment.
BackgroundMultidrug resistance is the main obstacle for hepatocellular carcinoma (HCC) treatment. miR-32-5p is involved in HCC progression but its function in multidrug resistance is still unclear. Here we aim to find out the function of miR-32-5p in inducing multidrug resistance and its underlying mechanisms of transforming sensitive cell to resistant cell.MethodsWe detected the expression of miR-32-5p and PTEN in the multidrug-resistant cell line (Bel/5-FU) and the sensitive cell line (Bel7402), HCC and para-carcinoma liver tissues through real-time PCR. Dual-luciferase reporter assay verified PTEN is the target of miR-32-5p. Exosomes from sensitive and multidrug resistant cell line were obtained and confirmed through ultracentrifuge and Nano Analyzer. Gain- and loss-of-function experiments, rescue experiments, a PI3K/Akt pathway inhibitor, an exosome biogenesis inhibitor, and nude mice xenograft models were used to determine the underlying mechanisms of miR-32-5p and PTEN, as well as exosomal miR-32-5p in inducing multidrug resistance in vitro and in vivo.ResultsmiR-32-5p was significantly elevated but PTEN was reduced in Bel/5-FU. An inverse correlation between miR-32-5p and PTEN was confirmed in HCC cell lines and patients; moreover, high expression of miR-32-5p and low expression of PTEN were positively associated with poor prognosis. Over-expression of miR-32-5p activated the PI3K/Akt pathway by suppressing PTEN and induced multidrug resistance via exosomes through promoting angiogenesis and epithelial-mesenchymal transition (EMT).ConclusionsOur study demonstrated that the multidrug-resistant cell, Bel/5-FU delivers miR-32-5p to sensitive cell, Bel7402 by exosomes and activates the PI3K/Akt pathway to further induce multidrug resistance by modulating angiogenesis and EMT.Electronic supplementary materialThe online version of this article (10.1186/s13046-018-0677-7) contains supplementary material, which is available to authorized users.
Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme that generates NADPH to maintain reduced glutathione (GSH), which scavenges reactive oxygen species (ROS) to protect cancer cell from oxidative damage. In this study, we mainly investigate the potential roles of G6PD in colorectal cancer (CRC) development and chemoresistance. We discover that G6PD is overexpressed in CRC cells and patient specimens. High expression of G6PD predicts poor prognosis and correlated with poor outcome of oxaliplatin-based first-line chemotherapy in patients with CRC. Suppressing G6PD decreases NADPH production, lowers GSH levels, impairs the ability to scavenge ROS levels, and enhances oxaliplatin-induced apoptosis in CRC via ROS-mediated damage in vitro. In vivo experiments further shows that silencing G6PD with lentivirus or non-viral gene delivery vector enhances oxaliplatin anti-tumor effects in cell based xenografts and PDX models. In summary, our finding indicated that disrupting G6PD-mediated NADPH homeostasis enhances oxaliplatin-induced apoptosis in CRC through redox modulation. Thus, this study indicates that G6PD is a potential prognostic biomarker and a promising target for CRC therapy.
MicroRNA‐155‐5p (miR‐155‐5p) has been reported to play an oncogenic role in different human malignancies; however, its role in hepatocellular carcinoma (HCC) progression is not clearly understood. In this study, we used real‐time PCR in 20 rats with chemically‐induced HCC, 28 human HCC tissues, and the matched paracarcinoma tissues, and HCC cell lines to determine the expression patterns of miR‐155‐5p and PTEN mRNA. Algorithm‐based and experimental strategies, such as dual luciferase gene reporter assays, real‐time PCR and western blots were used to identify PTEN as a candidate miR‐155‐5p target. Gain‐ and loss‐of‐function experiments and administration of a PI3K/Akt pathway inhibitor (wortmannin) were used to identify the effects of miR‐155‐5p and PTEN in MTT assays, flow cytometric analysis, wound healing assays and transwell assays. The results showed that miR‐155‐5p was highly overexpressed; however, PTEN was underexpressed in the HCC rat models, human HCC tissues and cell lines. In addition, miR‐155‐5p upregulation and PTEN downregulation were significantly associated with TNM stage (P < 0.05). Through in vitro experiments, we found that miR‐155‐5p promoted proliferation, invasion and migration, but inhibited apoptosis in HCC by directly targeting the 3′‐UTR of PTEN. Western blots showed that miR‐155‐5p inactivated Bax and caspase‐9, but activated Bcl‐2 to inhibit apoptosis, and it activated MMP to promote migration and invasion via the PI3K/Akt pathway. A xenograft tumor model was used to demonstrate that miR‐155‐5p targets PTEN and activates the PI3K/Akt pathway in vivo as well. Our study highlighted the importance of miR‐155‐5p and PTEN associated with aggressive HCC both in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.