This study investigated the effects of melatonin on diabetic cardiomyopathy (DCM) and determined the underlying mechanisms. Echocardiography indicated that melatonin notably mitigated the adverse left ventricle remodeling and alleviated cardiac dysfunction in DCM. The mechanisms were attributed to increased autophagy, reduced apoptosis, and alleviated mitochondrial dysfunction. Furthermore, melatonin inhibited Mst1 phosphorylation and promoted Sirt3 expression in DCM. These results indicated that melatonin may exert its effects through Mst1/Sirt3 signaling. To verify this hypothesis, a DCM model using Mst1 transgenic (Mst1 Tg) and Mst1 knockout (Mst1 ) mice was constructed. As expected, melatonin increased autophagy, reduced apoptosis and improved mitochondrial biogenesis in Mst1 Tg mice subjected to DCM injury, while it had no effects on Mst1 mice. In addition, cultured neonatal mouse cardiomyocytes were subjected to simulated diabetes to probe the mechanisms involved. Melatonin administration promoted autophagic flux as demonstrated by elevated LC3-II and lowered p62 expression in the presence of bafilomycin A1. The results suggest that melatonin alleviates cardiac remodeling and dysfunction in DCM by upregulating autophagy, limiting apoptosis, and modulating mitochondrial integrity and biogenesis. The mechanisms are associated with Mst1/Sirt3 signaling.
Radiotherapy significantly improves the therapeutic outcomes and survival of breast cancer patients. However, the acquired resistance to this therapeutic modality is a major clinical challenge. Here we show that ionizing irradiation (IR)-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3) at the Tyr705 residue and the induction of reactive oxygen species (ROS) in wild-type and radioresistant MDA-MB-231 and MDA-MB-468 triple-negative breast cancer (TNBC) cell lines. Comparing with radiosensitive parental TNBC cells, significantly low levels of ROS and higher protein levels of phospho-STAT3 and Bcl-2 were observed in TNBC cells with acquired radioresistance. Moreover, knockdown of STAT3 by shRNA sensitized the TNBC cells to IR. Niclosamide, a potent inhibitor of STAT3, overcame the radioresistance in TNBC cells via inhibition of STAT3 and Bcl-2 and induction of ROS. In combination with radiation, niclosamide treatment resulted in significant increase of ROS generation and induction of apoptosis in parental and radioresistant TNBC cells in vitro and TNBC xenograft tumors in vivo. These findings demonstrate that activation of STAT3 and Bcl-2 and reduction of ROS contribute to the development of radioresistance in TNBC, and niclosamide acts as a potent radiosensitizer via inhibiting STAT3 and Bcl-2 and increasing ROS generation in TNBC cells and xenograft tumors. Our findings suggest that niclosamide in combination with irradiation may offer an effective alternative approach for restoring the sensitivity of radioresistant TNBC cells to IR for improved therapeutic efficacy and outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.