Age‐associated obesity and muscle atrophy (sarcopenia) are intimately connected and are reciprocally regulated by adipose tissue and skeletal muscle dysfunction. During ageing, adipose inflammation leads to the redistribution of fat to the intra‐abdominal area (visceral fat) and fatty infiltrations in skeletal muscles, resulting in decreased overall strength and functionality. Lipids and their derivatives accumulate both within and between muscle cells, inducing mitochondrial dysfunction, disturbing β‐oxidation of fatty acids, and enhancing reactive oxygen species (ROS) production, leading to lipotoxicity and insulin resistance, as well as enhanced secretion of some pro‐inflammatory cytokines. In turn, these muscle‐secreted cytokines may exacerbate adipose tissue atrophy, support chronic low‐grade inflammation, and establish a vicious cycle of local hyperlipidaemia, insulin resistance, and inflammation that spreads systemically, thus promoting the development of sarcopenic obesity (SO). We call this the metabaging cycle. Patients with SO show an increased risk of systemic insulin resistance, systemic inflammation, associated chronic diseases, and the subsequent progression to full‐blown sarcopenia and even cachexia. Meanwhile in many cardiometabolic diseases, the ostensibly protective effect of obesity in extremely elderly subjects, also known as the ‘obesity paradox’, could possibly be explained by our theory that many elderly subjects with normal body mass index might actually harbour SO to various degrees, before it progresses to full‐blown severe sarcopenia. Our review outlines current knowledge concerning the possible chain of causation between sarcopenia and obesity, proposes a solution to the obesity paradox, and the role of fat mass in ageing.
Doxorubicin (DOX) is widely used to treat various cancers affecting adults and children; however, its clinical application is limited by its cardiotoxicity. Previous studies have shown that children are more susceptible to the cardiotoxic effects of DOX than adults, which may be related to different maturity levels of cardiomyocyte, but the underlying mechanisms are not fully understood. Moreover, researchers investigating DOX‐induced cardiotoxicity caused by human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) have shown that dexrazoxane, the recognized cardioprotective drug for treating DOX‐induced cardiotoxicity, does not alleviate the toxicity of DOX on hiPSC‐CMs cultured for 30 days. We have suggested that this may be ascribed to the immaturity of the 30 days hiPSC‐CMs. In this study, we investigated the mechanisms of DOX induced cardiotoxicity in cardiomyocytes of different maturity. We selected 30‐day‐old and 60‐day‐old hiPSC‐CMs (day 30 and day 60 groups), which we term ‘immature’ and ‘relatively mature’ hiPSC‐CMs, respectively. The day 30 CMs were found to be more susceptible to DOX than the day 60 CMs. DOX leads to more ROS (reactive oxygen species) production in the day 60 CMs than in the relatively immature group due to increased mitochondria number. Moreover, the day 60 CMs mainly expressed topoisomerase IIβ presented less severe DNA damage, whereas the day 30 CMs dominantly expressed topoisomerase IIα exhibited much more severe DNA damage. These results suggest that immature cardiomyocytes are more sensitive to DOX as a result of a higher concentration of topoisomerase IIα, which leads to more DNA damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.