Accurate identification of tumor-derived somatic variants in plasma circulating cell-free DNA (cfDNA) requires understanding the various biologic compartments contributing to the cfDNA pool. We sought to define the technical feasibility of a high-intensity sequencing assay of cfDNA and matched white-blood cell (WBC) DNA covering a large genomic region (508 genes, 2Mb, >60,000X raw-depth) in a prospective study of 124 metastatic cancer patients, with contemporaneous matched tumor tissue biopsies, and 47 non-cancer controls. The assay displayed a high sensitivity and specificity, allowing for de novo detection of tumor-derived mutations and inference of tumor mutational burden, microsatellite instability, mutational signatures and sources of somatic mutations identified in cfDNA. The vast majority of cfDNA mutations (81.6% in controls and 53.2% in cancer patients) had features consistent with clonal hematopoiesis (CH). This cfDNA sequencing approach revealed that CH constitutes a pervasive biological phenomenon emphasizing the importance of matched cfDNA-WBC sequencing for accurate variant interpretation.
Predicting outcomes in men with newly diagnosed prostate cancer is challenging. This study demonstrates that a new molecular test, the Genomic Prostate Score, which can be performed on a patient's original prostate needle biopsy, can predict the aggressiveness of the cancer and help men make decisions regarding the need for immediate treatment of their cancer.
Non-invasive approaches for cell-free DNA (cfDNA) assessment provide an opportunity for cancer detection and intervention. Here, we use a machine learning model for detecting tumor-derived cfDNA through genome-wide analyses of cfDNA fragmentation in a prospective study of 365 individuals at risk for lung cancer. We validate the cancer detection model using an independent cohort of 385 non-cancer individuals and 46 lung cancer patients. Combining fragmentation features, clinical risk factors, and CEA levels, followed by CT imaging, detected 94% of patients with cancer across stages and subtypes, including 91% of stage I/II and 96% of stage III/IV, at 80% specificity. Genome-wide fragmentation profiles across ~13,000 ASCL1 transcription factor binding sites distinguished individuals with small cell lung cancer from those with non-small cell lung cancer with high accuracy (AUC = 0.98). A higher fragmentation score represented an independent prognostic indicator of survival. This approach provides a facile avenue for non-invasive detection of lung cancer.
There is a high degree of concordance among local IHC, central IHC, and central RT-PCR by the proprietary gene assay for ER and PR status. Although ER expression is marginally associated with relapse in ER-positive patients treated with chemohormonal therapy, recurrence score is a highly significant predictor of recurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.