The emergence of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected global public health and economy. Despite the substantial efforts, only few vaccines are currently approved and some are in the different stages of clinical trials. As the disease rapidly spreads, an affordable and effective vaccine is urgently needed. In this study, we investigated the immunogenicity of plant-produced receptor-binding domain (RBD) of SARS-CoV-2 in order to use as a subunit vaccine. In this regard, RBD of SARS-CoV-2 was fused with Fc fragment of human IgG1 and transiently expressed in Nicotiana benthamiana by agroinfiltration. The plant-produced RBD-Fc fusion protein was purified from the crude extract by using protein A affinity column chromatography. Two intramuscular administration of plant-produced RBD-Fc protein formulated with alum as an adjuvant have elicited high neutralization titers in immunized mice and cynomolgus monkeys. Further it has induced a mixed Th1/Th2 immune responses and vaccine-specific T-lymphocyte responses which was confirmed by interferon-gamma (IFN-γ) enzyme-linked immunospot assay. Altogether, our results demonstrated that the plant-produced SARS-CoV-2 RBD has the potential to be used as an effective vaccine candidate against SARS-CoV-2. To our knowledge, this is the first report demonstrating the immunogenicity of plant-produced SARS-CoV-2 RBD protein in mice and non-human primates.
Cynomolgus macaques are common across South East Asian countries including Thailand. The National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU) captures wild-borne cynomolgus macaque for research use. Limited information is available on the enteric viruses and possible zoonotic infections into or from cynomolgus macaques. We characterized and compare the fecal virome of two populations; healthy wild-originated captive cynomolgus macaques (n = 43) reared in NPRCT-CU and healthy wild cynomolgus macaques (n = 35). Over 90% of recognized viral sequence reads amplified from feces were from bacterial viruses. Viruses from seven families of mammalian viruses were also detected (Parvoviridae, Anelloviridae, Picornaviridae, Adenoviridae, Papillomaviridae, Herpesviridae, and Caliciviridae). The genomes of a member of a new picornavirus genus we named Mafapivirus, a primate chapparvovirus, and a circular Rep-encoding single-strand (CRESS) DNA virus were also characterized. Higher abundance of CRESS DNA viruses of unknown tropism and invertebrate-tropic ambidensovirus were detected in wild versus captive macaques likely reflecting dietary differences. Short term rearing in captivity did not have a pronounced effect on the diversity of mammalian viruses of wild cynomolgus macaques. This study is the first report of the fecal virome of cynomolgus macaques, non-human primates frequently used in biomedical research and vaccination studies.
Cynomolgus monkeys (Macaca fascicularis; MF) are commonly used as nonhuman primate models for pharmaceutical product testing. In their habitat range, monkeys have close contact with humans, allowing the possibility of bidirectional transmission of tuberculosis (TB) between the two species. Although the intradermal tuberculin skin test (TST) is used for TB detection in MF, it has limitations. Herein, we established the mIGRA, combining human QuantiFERON-TB Gold-Plus and monkey IFN-γ ELISApro systems, and used it to investigate 39 captive MF who were cage-mates or lived in cages located near a monkey who died from the naturally TB infection. During a 12-month period of study, 14 (36%), 10 (26%), and 8 (21%) monkeys showed TB-positive results using the mIGRA, the TST, and TB culture, respectively. Among the 14 mIGRA-positive monkeys, 8 (57.1%) were TST-positive and 7 (50%) were culture-positive, indicating early TB detection in the latent and active TB stages with the mIGRA. Interestingly, 3 (37.5%) of the TST-negative monkeys were culture-positive. Our study showed that the mIGRA offers many advantages, including high sensitivity and high throughput, and it requires only one on-site visit to the animals. The assay may be used as a supplementary tool for TB screening in MF.
Long-tailed macaques (Macaca fascicularis), distributed in Southeast Asia, are generally used in biomedical research. At present, the expansion of human communities overlapping of macaques’ natural habitat causes human-macaque conflicts. To mitigate this problem in Thailand, the National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU), was granted the permit to catch the surplus wild-born macaques and transfer them to the center. Based on the fact that the diets provided and the captive environments were different, their oral-gut microbiota should be altered. Thus, we investigated and compared the oral and fecal microbiome between wild-born macaques that lived in the natural habitats and those transferred to and reared in the NPRCT-CU for 1 year. The results from 16S rRNA high-throughput sequencing showed that the captive macaques had distinct oral-gut microbiota profiles and lower bacterial richness compared to those in wild macaques. The gut of wild macaques was dominated by Firmicutes which is probably associated with lipid absorption and storage. These results implicated the effects of captivity conditions on the microbiome that might contribute to crucial metabolic functions. Our study should be applied to the animal health care program, with respect to microbial functions, for non-human primates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.