Pine wilt disease (PWD) caused by the pinewood nematode (PWN) (Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle) is a worldwide issue. Infection is considered to be promoted mainly by the increased air temperature, but it is important to investigate whether the effect of high temperature similarly influences the different ranks of resistant clone. In the present study, we conducted PWN inoculation tests using six common open-pollinated families of resistant Pinus thunbergii Parl. The tests were conducted at nurseries of five test sites across Japanese archipelago between 2015 and 2017. Our analysis focused specifically on temperature. Firstly, we examined the effects of test sites, inoculation year, and their interaction on unaffected seedling rate and found that the unaffected seedling rate of all tested pine families decreased as the cumulative temperature increased. We found that the unaffected seedling rate decreased as the cumulative temperature increased for all tested pine families. In general, higher cumulative temperatures were required for having an effect on the unaffected seedling rates of higher PWN-resistant families. Typically, early cumulative temperatures, i.e., 19 days after inoculation, had the greatest effect on the unaffected seedling rates of PWN-resistant pines. However, the relationship between cumulative temperature and predicted unaffected seedling rate follow similar rate for all families. Thus, the order of resistance level is maintained in terms of the cumulative temperature required for having an effect.
Background and Objectives: To determine whether the progeny of pinewood nematode-resistant Pinus thunbergii Parl. clones selected in the southwestern region of Japan could be successful in reforestation in the northern region, we investigated the magnitude of the genotype–environment interaction effect on the resistance against Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle in P. thunbergii. Materials and Methods: We inoculated P. thunbergii seedlings of six full-sib families, with various resistance levels, with B. xylophilus in nurseries at three experimental sites in the northern and southern regions of Japan. All parental clones of the tested families originated from southwestern Japan, and selection of parental clones for resistance was performed in the same region. Sound rates after nematode inoculation were calculated, and survival analysis, correlation analysis and variance component analysis were performed. Results and Conclusions: Families with high sound rate in the southern region also showed a high sound rate in the northern region. In almost all cases, Spearman’s correlation coefficients for sound rates were more than 0.698 among sites. The variance component of the interaction between site and family was small compared to that of site and family separately. Thus, we conclude that the resistant clones selected in the southern region would retain their genetic resistance in the northern regions.
Fig. S1. The locations of the analyzed test sites Fig. S2. Examples of 5-year height data obtained from five test sites including excluded data. Red circles represent removed data as error values determined by the procedure explained in the text.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.