Despite recent biomedical breakthroughs and large genomic studies growing momentum, the Middle Eastern population, home to over 400 million people, is underrepresented in the human genome variation databases. Here we describe insights from Phase 1 of the Qatar Genome Program with whole genome sequenced 6047 individuals from Qatar. We identified more than 88 million variants of which 24 million are novel and 23 million are singletons. Consistent with the high consanguinity and founder effects in the region, we found that several rare deleterious variants were more common in the Qatari population while others seem to provide protection against diseases and have shaped the genetic architecture of adaptive phenotypes. These results highlight the value of our data as a resource to advance genetic studies in the Arab and neighboring Middle Eastern populations and will significantly boost the current efforts to improve our understanding of global patterns of human variations, human history, and genetic contributions to health and diseases in diverse populations.
Genomics has the potential to revolutionize medical approaches to disease prevention, diagnosis, and treatment, but it does not come without challenges. The success of a national population-based genome program, like the Qatar Genome Program (QGP), depends on the willingness of citizens to donate samples and take up genomic testing services. This study explores public attitudes of the Qatari population toward genetic testing and toward participating in the QGP. A representative sample of 837 adult Qataris was surveyed in May 2016. Approximately 71% of respondents surveyed reported that they were willing to participate in the activities of the QGP. Willingness to participate was significantly associated with basic literacy in genetics, a family history of genetic diseases, and previous experience with genetic testing through premarital screening. Respondents cited the desire to know more about their health status as the principle motivation for participating, while lack of time and information were reported as the most important barriers. With QGP plans to ramp up the scale of its national operation toward more integration into clinical care settings, it is critical to understand public attitudes and their determinants. The results demonstrate public support but also identify the need for more education and individual counseling that not only provide information on the process, challenges, and benefits of genomic testing, but that also address concerns about information security.
Arab populations are largely understudied, notably their genetic structure and history. Here we present an in-depth analysis of 6,218 whole genomes from Qatar, revealing extensive diversity as well as genetic ancestries representing the main founding Arab genealogical lineages of Qahtanite (Peninsular Arabs) and Adnanite (General Arabs and West Eurasian Arabs). We find that Peninsular Arabs are the closest relatives of ancient hunter-gatherers and Neolithic farmers from the Levant, and that founder Arab populations experienced multiple splitting events 12–20 kya, consistent with the aridification of Arabia and farming in the Levant, giving rise to settler and nomadic communities. In terms of recent genetic flow, we show that these ancestries contributed significantly to European, South Asian as well as South American populations, likely as a result of Islamic expansion over the past 1400 years. Notably, we characterize a large cohort of men with the ChrY J1a2b haplogroup (n = 1,491), identifying 29 unique sub-haplogroups. Finally, we leverage genotype novelty to build a reference panel of 12,432 haplotypes, demonstrating improved genotype imputation for both rare and common alleles in Arabs and the wider Middle East.
In a clinical setting, DNA sequencing can uncover findings unrelated to the purpose of genetic evaluation. The American College of Medical Genetics and Genomics (ACMG) recommends the evaluation and reporting of 59 genes from clinic genomic sequencing. While the prevalence of secondary findings is available from large population studies, these data lack Arab and other Middle Eastern populations. The Qatar Genome Program (QGP) generates whole-genome sequencing (WGS) data and combines it with phenotypic information to create a comprehensive database for studying the Qatari and wider Arab and Middle Eastern populations at the molecular level. This study identified and analyzed medically actionable variants in the 59 ACMG genes using WGS data from 6045 QGP participants. Our results identified a total of 60 pathogenic and likely pathogenic variants in 25 ACMG genes in 141 unique individuals. Overall, 2.3% of the QGP sequenced participants carried a pathogenic or likely pathogenic variant in one of the 59 ACMG genes. We evaluated the QGP phenotype-genotype association of additional nonpathogenic ACMG variants. These variants were found in patients from the Hamad Medical Corporation or reported incidental findings data in Qatar. We found a significant phenotype association for two variants, c.313+3A>C in LDLR, and c.58C>T (p.Gln20*) in the TPM1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.