Modeling and recognizing landmarks at world-scale is a useful yet challenging task. There exists no readily available list of worldwide landmarks. Obtaining reliable visual models for each landmark can also pose problems, and efficiency is another challenge for such a large scale system. This paper leverages the vast amount of multimedia data on the web, the availability of an Internet image search engine, and advances in object recognition and clustering techniques, to address these issues. First, a comprehensive list of landmarks is mined from two sources: (1) ∼20 million GPS-tagged photos and (2) online tour guide web pages. Candidate images for each landmark are then obtained from photo sharing websites or by querying an image search engine. Second, landmark visual models are built by pruning candidate images using efficient image matching and unsupervised clustering techniques. Finally, the landmarks and their visual models are validated by checking authorship of their member images. The resulting landmark recognition engine incorporates 5312 landmarks from 1259 cities in 144 countries. The experiments demonstrate that the engine can deliver satisfactory recognition performance with high efficiency.
State-of-the-art question answering (QA) systems employ termdensity ranking to retrieve answer passages. Such methods often retrieve incorrect passages as relationships among question terms are not considered. Previous studies attempted to address this problem by matching dependency relations between questions and answers.They used strict matching, which fails when semantically equivalent relationships are phrased differently. We propose fuzzy relation matching based on statistical models. We present two methods for learning relation mapping scores from past QA pairs: one based on mutual information and the other on expectation maximization. Experimental results show that our method significantly outperforms state-of-the-art density-based passage retrieval methods by up to 78% in mean reciprocal rank. Relation matching also brings about a 50% improvement in a system enhanced by query expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.