Endothelium-derived nitric oxide (NO) is synthesized in response to chemical and physical stimuli. Here, we investigated a possible role of the endothelial cell glycocalyx as a biomechanical sensor that triggers endothelial NO production by transmitting flow-related shear forces to the endothelial membrane. Isolated canine femoral arteries were perfused with a Krebs-Henseleit solution at a wide range of perfusion rates with and without pretreatment with hyaluronidase to degrade hyaluronic acid glycosaminoglycans within the glycocalyx layer. NO production rate was evaluated as the product of nitrite concentration in the perfusate and steady-state perfusion rate. The slope that correlates the linear relation between perfusion rate and NO production rate was taken as a measure for flow-induced NO production. Hyaluronidase treatment significantly decreased flow-induced NO production to 19 +/- 9% of control (mean +/- SD; P < 0.0001 vs. control; n = 11), whereas it did not affect acetylcholine-induced NO production (88 +/- 17% of pretreatment level, P = not significant; n = 10). We conclude that hyaluronic acid glycosaminoglycans within the glycocalyx play a pivotal role in detecting and amplifying the shear force of flowing blood that triggers endothelium-derived NO production in isolated canine femoral arteries.
Background-Recent studies in vitro have demonstrated that endothelium-derived hydrogen peroxide (H 2 O 2 ) is an endothelium-derived hyperpolarizing factor (EDHF) in animals and humans. The aim of this study was to evaluate our hypothesis that endothelium-derived H 2 O 2 is an EDHF in vivo and plays an important role in coronary autoregulation. Methods and Results-To test this hypothesis, we evaluated vasodilator responses of canine (nϭ41) subepicardial small coronary arteries (Ն100 m) and arterioles (Ͻ100 m) with an intravital microscope in response to acetylcholine and to a stepwise reduction in coronary perfusion pressure (from 100 to 30 mm Hg) before and after inhibition of NO synthesis with N G -monomethyl-L-arginine (L-NMMA). After L-NMMA, the coronary vasodilator responses were attenuated primarily in small arteries, whereas combined infusion of L-NMMA plus catalase (an enzyme that selectively dismutates H 2 O 2 into water and oxygen) or tetraethylammonium (TEA, an inhibitor of large-conductance K Ca channels) attenuated the vasodilator responses of coronary arteries of both sizes. Residual arteriolar dilation after L-NMMA plus catalase or TEA was largely attenuated by 8-sulfophenyltheophylline, an adenosine receptor inhibitor. Conclusions-These results suggest that H 2 O 2 is an endogenous EDHF in vivo and plays an important role in coronary autoregulation in cooperation with NO and adenosine.
Background-The phase difference of coronary arterial and venous flows indicates the importance of intramyocardial capacitance vessels in storing diastolic flow and in discharging volume in systole. However, the anatomic and functional characteristics of the capacitance vessels are unclear. We aimed to clarify those characteristics with their transmural difference by 3D visualization of transmural microvessels under diastole and systole. Methods and Results-We performed complete intracoronary filling of a contrast medium into Langendorff's Wistar rat hearts under (1) St Thomas-perfused diastolic arrest (D-mode) and (2) BaCl 2 -induced systolic arrest (S-mode). Precise transmural 3D architectures of capillaries and of pre-and post-capillary microvessels (ie, microvessels larger than capillaries) were visualized clearly with a confocal laser scanning microscope and x-ray microcomputed tomography (microCT), respectively. Vascular volume fraction (VF) and systolic-induced VF reduction rate from D-to S-mode were analyzed. The net capillary VF in D-mode (20.4Ϯ0.9%) was 10 times that of larger microvessels and was reduced in S-mode by 32% without capillary collapse. Systolic-induced VF reduction rate was smaller in capillaries than in larger microvessels (48%; PϽ0.05). The larger microvessel VF in D-mode (2.2Ϯ0.2%) was reduced in S-mode, accompanied by complicated 3D deformation. Conclusions-Capillaries were relatively resistant to the systolic extravascular compression compared with pre-and post-capillary microvessels, conveniently beneficial for the myocardial oxygen delivery throughout a cardiac cycle. Nevertheless, a larger change in the absolute volume of capillaries may function as effective capacitance. On one hand, the pre-and post-capillary microvessels showed a larger phasic change in resistance, which may function to maintain the capillary patency during systole. (Circulation. 2002;105:621-626.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.