The medial temporal lobe (MTL) is an early site of tau accumulation and MTL dysfunction may underlie episodic-memory decline in aging and dementia. Postmortem data indicate that tau pathology in the transentorhinal cortex is common by age 60, whereas spread to neocortical regions and worsening of cognition is associated with β-amyloid (Aβ). We used [F]AV-1451 and [C]PiB positron emission tomography, structural MRI, and neuropsychological assessment to investigate how tau accumulation in temporal lobe regions, Aβ, and MTL atrophy contribute to episodic memory in cognitively normal older adults ( = 83; age, 77 ± 6 years; 58% female). Stepwise regressions identified tau in MTL regions known to be affected in old age as the best predictor of episodic-memory performance independent of Aβ status. There was no interactive effect of MTL tau with Aβ on memory. Higher MTL tau was related to higher age in the subjects without evidence of Aβ. Among temporal lobe subregions, episodic memory was most strongly related to tau-tracer uptake in the parahippocampal gyrus, particularly the posterior entorhinal cortex, which in our parcellation includes the transentorhinal cortex. In subjects with longitudinal MRI and cognitive data ( = 57), entorhinal atrophy mirrored patterns of tau pathology and their relationship with memory decline. Our data are consistent with neuropathological studies and further suggest that entorhinal tau pathology underlies memory decline in old age even without Aβ. Tau tangles and β-amyloid (Aβ) plaques are key lesions in Alzheimer's disease (AD) but both pathologies also occur in cognitively normal older people. Neuropathological data indicate that tau tangles in the medial temporal lobe (MTL) underlie episodic-memory impairments in AD dementia. However, it remains unclear whether MTL tau pathology also accounts for memory impairments often seen in elderly people and how Aβ affects this relationship. Using tau-specific and Aβ-specific positron emission tomography tracers, we show that MTL tau pathology is associated with episodic-memory performance and MTL atrophy in cognitively normal adults, independent of Aβ. Our data point to MTL tau pathology, particularly in the entorhinal cortex, as a substrate of age-related episodic-memory loss.
Objective: To determine the rate of tau accumulation in healthy older adults (OA) and patients with Alzheimer disease (AD), as well as the relationship of tau accumulation to cortical atrophy. Methods: Two longitudinal flortaucipir (FTP) positron emission tomography (PET) and magnetic resonance imaging (MRI) scans were acquired from 42 OA (21 Pittsburg compound B [PiB] + , age = 77.6 AE 4.6 years, 25 female [F]/17 male [M]) and 19 PiB + patients with AD (age = 63.1 AE 10.3 years, 12 F/7 M) over 1 to 3 years of follow-up. FTP change, structural MRI measures of atrophy, and cross-modal correlations were examined on a voxelwise level. Regional annual percentage change in FTP was also calculated. Results: Voxelwise FTP change in AD showed the greatest increases in lateral and medial frontal lobes. Atrophy over the same interval was more widespread and included posteromedial cortical areas, where tau accumulation rates were lower. In OA, FTP binding increased in bilateral temporal lobe and retrosplenial cortex, accompanied by atrophy in the same regions. There were no associations between voxelwise change in FTP and sex, PiB, or APOE. Regional FTP significantly increased at follow-up in OA and patients with AD. Mixed effects models showed greater FTP increases in AD compared to OA, and no differences within OA based on PiB status. Interpretation: Our findings indicate that tau accumulates even in amyloid-negative healthy OA and this process can be measured with in vivo tau-PET. In OA, tau accumulation and atrophy share a similar topography. In AD, tau increases more rapidly and accumulation occurs in frontal regions that are not yet undergoing significant atrophy.
Alzheimer’s disease researchers have been intrigued by the selective regional vulnerability of the brain to amyloid-β plaques and tau neurofibrillary tangles. Post-mortem studies indicate that in ageing and Alzheimer’s disease tau tangles deposit early in the transentorhinal cortex, a region located in the anterior-temporal lobe that is critical for object memory. In contrast, amyloid-β pathology seems to target a posterior-medial network that subserves spatial memory. In the current study, we tested whether anterior-temporal and posterior-medial brain regions are selectively vulnerable to tau and amyloid-β deposition in the progression from ageing to Alzheimer’s disease and whether this is reflected in domain-specific behavioural deficits and neural dysfunction. 11C-PiB PET and 18F-flortaucipir uptake was quantified in a sample of 131 cognitively normal adults (age: 20–93 years; 47 amyloid-β-positive) and 20 amyloid-β-positive patients with mild cognitive impairment or Alzheimer’s disease dementia (65–95 years). Tau burden was relatively higher in anterior-temporal regions in normal ageing and this difference was further pronounced in the presence of amyloid-β and cognitive impairment, indicating exacerbation of ageing-related processes in Alzheimer’s disease. In contrast, amyloid-β deposition dominated in posterior-medial regions. A subsample of 50 cognitively normal older (26 amyloid-β-positive) and 25 young adults performed an object and scene memory task while functional MRI data were acquired. Group comparisons showed that tau-positive (n = 18) compared to tau-negative (n = 32) older adults showed lower mnemonic discrimination of object relative to scene images [t(48) = −3.2, P = 0.002]. In a multiple regression model including regional measures of both pathologies, higher anterior-temporal flortaucipir (tau) was related to relatively worse object performance (P = 0.010, r = −0.376), whereas higher posterior-medial PiB (amyloid-β) was related to worse scene performance (P = 0.037, r = 0.309). The functional MRI data revealed that tau burden (but not amyloid-β) was associated with increased task activation in both systems and a loss of functional specificity, or dedifferentiation, in posterior-medial regions. The loss of functional specificity was related to worse memory. Our study shows a regional dissociation of Alzheimer’s disease pathologies to distinct memory networks. While our data are cross-sectional, they indicate that with ageing, tau deposits mainly in the anterior-temporal system, which results in deficits in mnemonic object discrimination. As Alzheimer’s disease develops, amyloid-β deposits preferentially in posterior-medial regions additionally compromising scene discrimination and anterior-temporal tau deposition worsens further. Finally, our findings propose that the progression of tau pathology is linked to aberrant activation and dedifferentiation of specialized memory networks that is detrimental to memory function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.