Carbon based perovskite solar cells are fabricated for the first time in a room temperature environment by employing inkjet infiltration of perovskite precursor ink. The fabricated perovskite solar cells exhibit impressive performance reproducibility with this automated method and exhibit high stability when exposed to 35 °C for a period of 1046 hours.
Previously, it has been shown that the grain size distribution plays an important role in the mechanical properties of welded steel. In the previous investigation, the volume-weighted average grain size has been shown to capture the influence of grain size distribution, resulting in a better fitting Hall-Petch relationship between grain size and hardness. However, the previous studies exclude the effects arising from local variation in grain size. In this paper, the grain size measurement methods are extended for the characterisation of the local grain size variation, which is significant for welded joints and can have an adverse effect on mechanical properties. The local gradient of grain size variation and its dependency on measurement direction are considered. In addition, examples of grain size and hardness variation are shown for S355 base metal and two weld metals, and characteristic differences are highlighted and discussed. The coarse-grained areas of a heterogeneous microstructure are found to have lower hardness than fine-grained areas. However, the surrounding microstructure, i.e. local grain size gradient, has an influence on the measured hardness values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.